Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beefing up the Sunday roast

05.08.2008
The Sunday roast on our dinner tables has the potential to be packed with bags more natural flavour, say scientists at The University of Nottingham.

Professor Kin-Chow Chang, of the University’s School of Veterinary Medicine and Science, is leading a three-year study into two different muscle fibre types that play a huge part in the appearance, texture and taste of the meat that we eat.

In the long-term, the results from studies like these could arm farmers with more information on which animals to use for breeding to achieve the tastiest cuts of meat without sacrificing high production values.

Professor Chang’s study, funded with more than £400,000 from the Biotechnology and Biological Sciences Research Council, will focus on the differences between fast muscle fibres and slow muscle fibres.

Slow muscle fibres, otherwise known as oxidative or red muscle, is associated with the most sought-after qualities of meat such as flavour intensity or tenderness whereas meat from fast muscle fibres, which tend to be bulkier and grow more rapidly, is considered to be tougher and drier.

Packed with capillaries, mitochondria and myoglobin that give the meat its darker colour, slow muscle fibres are more efficient at converting sugar and fatty acids to energy and, although slower to contract, will therefore function for longer before tiring. These are usually associated with animals that are living free range and are on the move for longer and produce flavoursome meat.

Farmers and consumers are currently faced with the problem that breeds chosen because they can grow quicker and produce larger quantities of meat and are therefore economically more attractive tend to predominantly produce fast muscle.

Professor Chang said: “Genetically, we have been very successful in breeding animals that can grow very quickly but the down side is that comes at the price of eating quality.

“The work we are doing focuses on finding out more at a molecular level about how fast muscle can switch to slow muscle and could lead to a better understanding of how to genetically choose animals for breeding that will produce better quality meat.”

The issue of fast and slow muscle affects all meat but is particularly pertinent to pork, chicken, lamb and beef in which animals are chosen for breeding according to how fast they grow and how much meat each animal can produce.

For example, in poultry farming broiler chickens take just six weeks to grow from hatching to slaughter and grow much faster than hens produced for egg production. However, the breast meat produced is often criticised as being bland in flavour.

The lab-based science being conducted at Nottingham is concentrating on a particular cell signalling pathway called the calcineuring pathway which, if stimulated, causes muscle to switch from fast to slow.

Learning more about this process could lead to the identification of genes important in the growth of slow muscle and allow farmers to use the wealth of genetic diversity that exists in animals to breed naturally tastier and succulent meat.

Part of the funding for the project will come from the pharmaceutical company Pfizer as an industrial partnership, reflecting the potential that the project may have in the development of new pharmacological products to safely target the growth of slow muscle in existing meat-producing breeds.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Beefing_up_the_Sunday_roast.html

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Researchers discover surprising quantum effect in hard disk drive material

26.04.2019 | Physics and Astronomy

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>