Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beefing up the Sunday roast

05.08.2008
The Sunday roast on our dinner tables has the potential to be packed with bags more natural flavour, say scientists at The University of Nottingham.

Professor Kin-Chow Chang, of the University’s School of Veterinary Medicine and Science, is leading a three-year study into two different muscle fibre types that play a huge part in the appearance, texture and taste of the meat that we eat.

In the long-term, the results from studies like these could arm farmers with more information on which animals to use for breeding to achieve the tastiest cuts of meat without sacrificing high production values.

Professor Chang’s study, funded with more than £400,000 from the Biotechnology and Biological Sciences Research Council, will focus on the differences between fast muscle fibres and slow muscle fibres.

Slow muscle fibres, otherwise known as oxidative or red muscle, is associated with the most sought-after qualities of meat such as flavour intensity or tenderness whereas meat from fast muscle fibres, which tend to be bulkier and grow more rapidly, is considered to be tougher and drier.

Packed with capillaries, mitochondria and myoglobin that give the meat its darker colour, slow muscle fibres are more efficient at converting sugar and fatty acids to energy and, although slower to contract, will therefore function for longer before tiring. These are usually associated with animals that are living free range and are on the move for longer and produce flavoursome meat.

Farmers and consumers are currently faced with the problem that breeds chosen because they can grow quicker and produce larger quantities of meat and are therefore economically more attractive tend to predominantly produce fast muscle.

Professor Chang said: “Genetically, we have been very successful in breeding animals that can grow very quickly but the down side is that comes at the price of eating quality.

“The work we are doing focuses on finding out more at a molecular level about how fast muscle can switch to slow muscle and could lead to a better understanding of how to genetically choose animals for breeding that will produce better quality meat.”

The issue of fast and slow muscle affects all meat but is particularly pertinent to pork, chicken, lamb and beef in which animals are chosen for breeding according to how fast they grow and how much meat each animal can produce.

For example, in poultry farming broiler chickens take just six weeks to grow from hatching to slaughter and grow much faster than hens produced for egg production. However, the breast meat produced is often criticised as being bland in flavour.

The lab-based science being conducted at Nottingham is concentrating on a particular cell signalling pathway called the calcineuring pathway which, if stimulated, causes muscle to switch from fast to slow.

Learning more about this process could lead to the identification of genes important in the growth of slow muscle and allow farmers to use the wealth of genetic diversity that exists in animals to breed naturally tastier and succulent meat.

Part of the funding for the project will come from the pharmaceutical company Pfizer as an industrial partnership, reflecting the potential that the project may have in the development of new pharmacological products to safely target the growth of slow muscle in existing meat-producing breeds.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Beefing_up_the_Sunday_roast.html

More articles from Studies and Analyses:

nachricht New model connects respiratory droplet physics with spread of Covid-19
21.07.2020 | University of California - San Diego

nachricht Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus
03.07.2020 | Klinikum der Universität München

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Molecular Forces: The Surprising Stretching Behaviour of DNA

05.08.2020 | Life Sciences

Carbon monoxide improves endurance performance

05.08.2020 | Health and Medicine

How tumor cells evade the immune defense

05.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>