Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beefing up the Sunday roast

05.08.2008
The Sunday roast on our dinner tables has the potential to be packed with bags more natural flavour, say scientists at The University of Nottingham.

Professor Kin-Chow Chang, of the University’s School of Veterinary Medicine and Science, is leading a three-year study into two different muscle fibre types that play a huge part in the appearance, texture and taste of the meat that we eat.

In the long-term, the results from studies like these could arm farmers with more information on which animals to use for breeding to achieve the tastiest cuts of meat without sacrificing high production values.

Professor Chang’s study, funded with more than £400,000 from the Biotechnology and Biological Sciences Research Council, will focus on the differences between fast muscle fibres and slow muscle fibres.

Slow muscle fibres, otherwise known as oxidative or red muscle, is associated with the most sought-after qualities of meat such as flavour intensity or tenderness whereas meat from fast muscle fibres, which tend to be bulkier and grow more rapidly, is considered to be tougher and drier.

Packed with capillaries, mitochondria and myoglobin that give the meat its darker colour, slow muscle fibres are more efficient at converting sugar and fatty acids to energy and, although slower to contract, will therefore function for longer before tiring. These are usually associated with animals that are living free range and are on the move for longer and produce flavoursome meat.

Farmers and consumers are currently faced with the problem that breeds chosen because they can grow quicker and produce larger quantities of meat and are therefore economically more attractive tend to predominantly produce fast muscle.

Professor Chang said: “Genetically, we have been very successful in breeding animals that can grow very quickly but the down side is that comes at the price of eating quality.

“The work we are doing focuses on finding out more at a molecular level about how fast muscle can switch to slow muscle and could lead to a better understanding of how to genetically choose animals for breeding that will produce better quality meat.”

The issue of fast and slow muscle affects all meat but is particularly pertinent to pork, chicken, lamb and beef in which animals are chosen for breeding according to how fast they grow and how much meat each animal can produce.

For example, in poultry farming broiler chickens take just six weeks to grow from hatching to slaughter and grow much faster than hens produced for egg production. However, the breast meat produced is often criticised as being bland in flavour.

The lab-based science being conducted at Nottingham is concentrating on a particular cell signalling pathway called the calcineuring pathway which, if stimulated, causes muscle to switch from fast to slow.

Learning more about this process could lead to the identification of genes important in the growth of slow muscle and allow farmers to use the wealth of genetic diversity that exists in animals to breed naturally tastier and succulent meat.

Part of the funding for the project will come from the pharmaceutical company Pfizer as an industrial partnership, reflecting the potential that the project may have in the development of new pharmacological products to safely target the growth of slow muscle in existing meat-producing breeds.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Beefing_up_the_Sunday_roast.html

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>