Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bath researchers study how cancer cells come unstuck

22.08.2008
Scientists in the Department of Biology & Biochemistry at the University of Bath have started a three year study into the junctions that hold cells together, giving insight into how cancer cells can break off and spread to other parts of the body.

Cancer affects one in three people at some point in their lives, with most cancer deaths being caused by the development of secondary tumours in other parts of the body. This research, funded by leading medical charity Cancer Research UK, could help scientists better understand what causes cancer to spread and may suggest new ways it could be treated in the future.

Normal cells are held together by junctions on the cell surface, but in some cancers these junctions are lost. This makes the cancerous cells more likely to break off and spread tumours to other parts of the body. Dr Andrew Chalmers and Dr Paul Whitley, both lecturers from the Department of Biology & Biochemistry, are studying how a group of proteins called ESCRTs are involved in the loss of these junctions in kidney and intestine cells.

“ESCRTs are like the recycling units of the cell; they oversee the constant intake, break down and replenishing of junctions on the cell surface,” explained Dr Chalmers.

“In a cancer cell where ESCRTs are damaged, the junctions may not be restored properly; this can cause cells to separate and migrate to form secondary tumours in other parts of the body.

“Previous studies have shown a link between ESCRTs and the loss of junctions in cells of fruit flies, so we want to see whether this is also true in humans.”

During this three year project, the researchers plan to block ESCRTs in cells grown in the lab to see the effects on the junctions. They will also be looking at whether mutations of ESCRTs are more common in certain types of cancer.

Dr Paul Whitley added: “This work should tell us more about the role of ESCRTs in cancer and provide possible new targets for therapy in the future.”

Vicky Just | alfa
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/bio-sci/about/index.html

Further reports about: Biochemistry Biology Cancer ESCRTs cancer cells intestine cells secondary tumours

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>