Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why our backs can't read braille

20.12.2012
Scientists map sensory nerves in mouse skin

Johns Hopkins scientists have created stunning images of the branching patterns of individual sensory nerve cells.


The twisted pathway of a single nerve cell in the skin on the back of a mouse. This particular cell has wrapped itself around at least 140 hair follicles.

Credit: Hao Wu

Their report, published online in the journal eLife on Dec. 18, details the arrangement of these branches in skin from the backs of mice. The branching patterns define ten distinct groups that, the researchers say, likely correspond to differences in what the nerves do and could hold clues for pain management and other areas of neurological study.

Each type of nerve cell that the team studied was connected at one end to the spinal cord through a thin, wire-like projection called an axon. On the other side of the cell's "body" was another axon that led to the skin. The axons branched in specific patterns, depending on the cell type, to reach their targets within the skin. "The complexity and precision of these branching patterns is breath-taking," says Jeremy Nathans, M.D., Ph.D., a Howard Hughes researcher and professor of molecular biology and genetics at the Institute for Basic Biomedical Sciences at the Johns Hopkins School of Medicine.

Skin is the body's largest sensory organ, and the nerves that pervade it are responsible for sending signals to the brain—signals¬ perceived as sensations of pain, temperature, pressure and itch, to name a few. Stimuli that prompt signals, like a change in temperature, can come directly from the skin, or they can come from hair follicles embedded in the skin. Each hair follicle consists of a tiny cylinder of cells within the skin that surrounds the root of an individual hair.

Nathans says that many axons catalogued in their study wrapped themselves around hair follicles. Different types of axons contact the follicles in different ways and at different depths within the skin, presumably to collect particular kinds of information.

One of the challenges in visualizing axons arises because their overlapping, maze-like pathways make it very difficult to tell one from another. To overcome this hurdle, Nathans' team, led by Hao Wu, Ph.D., a post-doctoral fellow in his lab, used a genetic trick to randomly color just a few dozen nerve cells out of the thousands in the skin of developing mice. Then Wu and colleague John Williams used software to trace the pattern of each nerve cell.

The axons of one type of nerve cell, for example, surrounded only a single hair follicle, its ends looking like a bear trap because of the vertical peaks flanking each hair column. Another type, accounting for 50 per cent of those the researchers saw, had 75 branch points, on average, allowing it to cover much larger areas and contact about 50 hair follicles per axon.

The axons of other nerve cell types were simpler and shorter, branching less but still encircling, like the tendrils of a vine, multiple hair follicles. Still another type had endings that appeared more like brambles—less organized and bushier and without any connections to hair follicles. These types, too, could be more or less branched and, therefore, covered a particular area of skin more or less densely.

One of the most remarkable axon patterns looked like an extensive vine on a trellis, with its tendrils wrapping around approximately 200 hair follicles (see image). The total length of one of these axons, with all its branches, was several times longer than the body of a mouse.

Nathans says the images now in hand will help scientists "make more sense" out of known responses to stimulation of the skin. For example, if a single nerve cell is responsible for monitoring a patch of skin a quarter of an inch square, multiple simultaneous points of pressure within that patch will only be perceived by the brain as a single signal. "That is why we can't read Braille using the skin on our backs: the multiple bumps that make up a Braille symbol are within such a small area that the axon branches can't distinguish them. By contrast, each sensory axon on the fingertip occupies a much smaller territory and this permits our fingertips to accurately distinguish small objects."

Nathans hopes that this new data can be paired with molecular and neurological data to determine the unique functions of each class of nerve cell that targets the skin. But he cautions that the ten categories they found are probably not exhaustive. "We know that there are other types of nerve endings in highly sensitive areas like our fingertips and lips. Even within the skin on the backs of mice, we suspect that our technique was not able to capture every type of nerve cell."

Many unanswered questions remain in this area, says Nathans, especially how these "beautiful branching patterns" are produced during embryonic development and what role(s) each type of nerve cell plays.

This work was supported by grants from the Human Frontier Science Program, the Johns Hopkins Brain Sciences Institute and the Howard Hughes Medical Institute.

On the Web:

Link to article in eLife: http://dx.doi.org/10.7554/eLife.00181

Nathans lab: http://neuroscience.jhu.edu/JeremyNathans.php

Nathans HHMI profile: http://www.hhmi.org/research/investigators/nathans_bio.html

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Biomedical Science Braille Science TV cell type hair follicle nerve cell

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>