Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel avian influenza A virus has potential for both virulence and transmissibility in humans

10.09.2013
Virus attaches to both upper and lower respiratory tract epithelium, according to report in The American Journal of Pathology

A new study has found that a novel avian-origin H7N9 influenza A virus, which has recently emerged in humans, attaches moderately or abundantly to the epithelium of both the upper and lower respiratory tracts.

This pattern has not been observed before for avian influenza A viruses. The report, published in the October issue of The American Journal of Pathology, suggests that the emerging H7N9 virus has the potential to cause a pandemic, since it may transmit efficiently in humans and cause severe pneumonia.

The first report of infections of humans with the influenza A virus of the subtype H7N9 surfaced in March 2013. Three patients from eastern China developed severe pneumonia and acute respiratory distress syndrome and died as a result. By May 30, 2013, the H7N9 infection was confirmed in 132 patients from China and Taiwan, 37 of whom died, according to the World Health Organization. Infected poultry were thought to be the source of the virus.

In the current study, investigators focused on the virus' pattern of attachment in order to assess its potential transmissibility and virulence. "Abundant virus attachment to the human upper respiratory tract correlates with efficient transmissibility among humans," explains Thijs Kuiken, DVM, PhD, of the Department of Viroscience at Erasmus University Medical Centre in Rotterdam, The Netherlands. "Virus attachment to Clara cells in the bronchioles and pneumocytes and macrophages in the alveoli correlates with high virulence."

Using virus histochemical analysis, the investigators looked at the pattern of attachment of two genetically engineered emerging H7 viruses (containing the hemagglutinin (HA) of either influenza virus A/Shanghai/1/13 or A/Anhui/1/13) to fixed human respiratory tract tissues and compared the findings to attachment patterns seen with human influenza viruses with high transmissibility but low virulence (seasonal H3N2 and pandemic H1N1) and highly pathogenic avian influenza (HPAI) viruses with low transmissibility and high virulence (H5N1 and H7N7).

They found that like other avian influenza viruses, the H7N9 viruses attached more strongly to lower parts of the human respiratory tract than to upper parts. However, compared to other avian influenza viruses, the attachment to epithelial cells by H7N9 in the bronchioles and alveoli of the lung was more abundant and the viruses attached to a broader range of cell types. "These characteristics fit with increased virulence of these emerging avian H7 viruses compared to that of human influenza viruses," says Dr. Kuiken.

A third notable finding was a more concentrated attachment of H7N9 viruses in ciliated cells of the nasal concha, trachea, and bronchi, suggesting the potential for efficient transmission among humans. "However, the fact that the emerging H7N9 virus has caused infection mainly in individual human cases suggests that it has not acquired all the necessary properties for efficient transmission among humans," notes Dr. Kuiken.

"Our results indicate that based just on the pattern of virus attachment the H7N9 currently emerging in China has the potential both to cause severe pulmonary disease and to be efficiently transmitted among humans," says Dr. Kuiken. He emphasizes that attachment is only the first step in the replication cycle of influenza virus in its host cell, and that other steps, as well as the host response, need to be taken into account to fully understand the potential of these emerging H7 viruses to cause an influenza pandemic.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>