Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antipsychotic drug exhibits cancer-fighting properties

10.01.2014
In zebrafish model, perphenazine activates therapeutic pathway for intractable leukemia, may hold promise for other tumors

In a prime example of finding new uses for older drugs, studies in zebrafish show that a 50-year-old antipsychotic medication called perphenazine can actively combat the cells of a difficult-to-treat form of acute lymphoblastic leukemia (ALL). The drug works by turning on a cancer-suppressing enzyme called PP2A and causing malignant tumor cells to self-destruct.

The findings suggest that developing medications that activate PP2A, while avoiding perphenazine's psychotropic effects, could help clinicians make much-needed headway against T-cell ALL, and perhaps other tumors as well.

A study team led by Alejandro Gutierrez, MD, and A. Thomas Look, MD, of Dana-Farber/Boston Children's Cancer and Blood Disorders Center, and Jon Aster, MD, PhD, of Dana-Farber Cancer Institute and Brigham and Women's Hospital, reported the results Jan. 9 in the Journal of Clinical Investigation.

T-ALL is rarer and more aggressive than the B-cell form of ALL, and it has a relatively poor prognosis. Despite improvements in the treatments available, 20 percent of children and more than 50 percent of adults diagnosed with T-ALL succumb to it.

To identify possible new treatment options, Gutierrez, Look and their collaborators screened a library of 4,880 compounds—including FDA-approved drugs whose patents had expired, small molecules and natural products—in a model of T-ALL engineered using zebrafish.

Strategies that identify new uses for existing drugs have grown in popularity in recent years as a way of quickly developing new disease therapies. Zebrafish models are cost-effective platforms for rapidly conducting drug screens, as well as basic stem cell, genetic, cancer and developmental research.

"We wanted to see if there were drugs or known bioactive molecules that are active against T-ALL that hadn't been tested yet," Look explained. "There may be drugs available for other indications that could be readily repurposed if we can show activity."

One of the strongest hits in the zebrafish screen was the drug perphenazine. It is a member of the phenothiazines, a family of antipsychotic medications used for 50 years, because they can block dopamine receptors.

The team verified perphenazine's anti-leukemic potential in vitro in several mouse and human T-ALL cell lines. Biochemical studies indicated that perphenazine's anti-tumor activity is independent of its psychotropic activity, and that it attacks T-ALL cells by turning on PP2A.

The fact that perphenazine works by reactivating a protein shut down in cancer cells is itself novel in the drug development field.

"We rarely find potential drug molecules that activate an enzyme," Gutierrez explained. "Most new drugs deactivate some protein or signal that the cancer cell requires to survive. But, here, perphenazine is restoring the activity of PP2A in the T-ALL cell."

Gutierrez and Look, along with their collaborators, are now working to better understand the interactions between PP2A and perphenazine. They also want to search for or develop molecules that bind to and activate the enzyme more tightly and specifically to avoid perphenazine's psychiatric effects.

"The challenge is to use medicinal chemistry to develop new PP2A inhibitors similar to perphenazine and the other phenothiazines, but to dial down dopamine interactions and accentuate those with PP2A," Look said.

The researchers see future PP2A inhibitors not as magic bullets but as potentially important additions to the oncologist's arsenal when treating patients with T-ALL.

" T-ALL patients are often on the borderline between a long remission and a cure," Look said. "If we can push the leukemia cells a little harder, we may get more patients who are actually cured. In this way, PP2A inhibitors may, in combination with other drugs, make a real difference for patients."

It may be that the benefits of PP2A-activating drugs could extend beyond T-ALL. "The proteins that PP2A suppresses, such as Myc and Akt, are involved in many tumors," Look noted. "We are optimistic that PP2A activators will have quite broad activity against different kinds of cancer, and we're anxious to study the pathway in other malignancies as well."

This study was supported by the National Cancer Institute (grant numbers K08CA133103 and P01CA109901), the Leukemia and Lymphoma Society, the William Lawrence Blanche Hughes Foundation, the Bear Necessities Foundation, the Ligue Nationale contre le Cancer, Association Laurette Fugain, Institut National du Cancer (INCA), Universités Paris Diderot and Paris Sud, INSERM, CEA and Canceropole Ile de France, European Union's Seventh Framework Programme and the American Society of Hematology.

The Dana-Farber/Boston Children's Cancer and Blood Disorders Center brings together two internationally known research and teaching institutions that have provided comprehensive care for pediatric oncology and hematology patients since 1947. The Harvard Medical School affiliates share a clinical staff that delivers inpatient care at Boston Children's Hospital and outpatient care at the Dana-Farber Cancer Institute's Jimmy Fund Clinic. Dana-Farber/Boston Children's brings the results of its pioneering research and clinical trials to patients' bedsides through five clinical centers: the Blood Disorders Center, the Brain Tumor Center, the Hematologic Malignancies Center, the Solid Tumors Center, and the Stem Cell Transplant Center.

Irene Sege | EurekAlert!
Further information:
http://www.dana-farber.org/

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>