Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-VEGF drugs for retinal diseases could have serious side effects, scientists caution

05.11.2008
Scientists at Schepens Eye Research Institute have found that reducing the levels of vascular endothelial growth factor (VEGF), which is best known as a stimulator of new blood vessel growth, in adult mice causes the death of photoreceptors and Muller glia - cells of the retina that are essential to visual function.

This finding, published in the November 3, 2008 PLoS ONE, holds implications for the chronic use of promising new anti-VEGF drugs such as Lucentis, which eliminate abnormal and damaging blood vessel growth and leakage in the retina by neutralizing VEGF.

"The take home message of this study is that physicians should be vigilant in monitoring patients undergoing anti-VEGF treatments for any possible signs of these side effects," says Principal Investigator Patricia D'Amore, Senior Scientist at Schepens Eye Research Institute. "Drugs such as Lucentis are very good at reducing the edema (fluids) and eliminating the abnormal blood vessels that characterize wet macular degeneration, but our results suggest that there could be unanticipated side effects."

Scientists have long known that VEGF is essential for normal development of the vascular system and for wound healing. It triggers the formation of new blood vessels that nourish the growing body and heal organs and tissues. VEGF also stimulates--in an apparent misguided attempt to heal perceived damage in the retina--the growth of abnormal blood vessels that leak and damage delicate retinal tissue.

However, a growing body of evidence also indicates that beyond its impact on blood vessel growth, VEGF may play other vital roles in the adult body and eye, so that eliminating the growth factor might lead to unexpected consequences.

Given the popularity and promise of the new anti-VEGF drugs for the treatment of macular degeneration, D'Amore and her team believed that investigating the broader role of this growth factor in the normal adult retina was critical. She and her laboratory mimicked the action of the anti-VEGF drugs by introducing into adult mice a soluble VEGF receptor, known as sFlt1, which binds and neutralizes the VEGF-- in much the same way that Lucentis does in the eye.

After two weeks, the team found no effect on blood vessels of the inner retina, but did find a significant increase in the number of dying cells of the inner and outer nuclear layers which include amacrine cells that participate in transmitting the visual signal; Muller cells that also participate in the visual signal and support the photoreceptors; and, photoreceptors, which are responsible for color and night vision. The team then used electroretinograms to measure visual function and found a significant loss in visual function. Consistent with these observations, they discovered that both photoreceptors and Muller cells express VEGFR2, the major VEGF signaling receptor and they found that neighboring Muller cells express VEGF.

Parallel studies in tissue culture demonstrated that suppressing VEGF in Muller cells led to Muller cell death, indicating an autocrine role for VEGF in Muller cells (i.e. Muller cells both make VEGF and use it for survival). Further, they used cultures of freshly isolated photoreceptors to show that VEGF can act as a protectant for these cells.

"Insight into the complex role of VEGF in the eye and in other parts of the body indicates that increased care should be taken in the long-term use of these drugs and that this new information should be considered in the design of future clinical studies to ensure that these possible side effects are taken into account," says D'Amore.

"Mice eyes differ from human eyes in many ways, so we cannot directly extrapolate these results to humans, but this study is an important heads-up that clinical application of anti-VEGF therapy in the eye needs to proceed with caution," she adds.

From a clinical perspective, Dr. Delia Sang of Ophthalmic Consultants of Boston points out that the use of anti-VEGF therapy in the treatment of patients with wet macular degeneration has revolutionized outcomes in this disease. However, in light of the work of Dr. D'Amore and others, in elucidating possible systemic and ocular side effects of these drugs, "caution must be exercised in identifying patients at increased risk of problems with long-=term VEGF blockade, and potential side effects must be detected early in the assessment of patients who will require repeated dosages of anti-VEGF agents."

The study is also relevant to the drug Avastin, which was initially approved for intravenous use as an anti-angiogenic agent in the treatment of cancer, but is also widely used intravitreally for the treatment of wet AMD because of its similar mode of action and much lower cost.

The next steps in D'Amore's research will include investigating the specific functions of VEGF in the eye.

Authors of the study include: Magali Saint-Geniez (1,2), Arindel S. R. Maharaj (1), Tony E. Walshe (1,2), Budd A. Tucker (1,2), Eiichi Sekiyama (1,2), Tomoki Kurihara (1), Diane C. Darland (4), Michael J. Young (1,2), Patricia A. D'Amore (1,2,3)

1 Schepens Eye Research Institute
2 Department of Ophthalmology, Harvard Medical School
3 Department of Pathology, Harvard Medical School
4 University of North Dakota, Grand Forks, North Dakota

Patti Jacobs | EurekAlert!
Further information:
http://www.schepens.harvard.edu/

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>