Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis Shows Stress on Clinicians Can Be Effectively Measured

11.11.2010
It’s no surprise that being a physician is a very stressful job and carries a lot of responsibility with it.

But two new studies from researchers at the University of Cincinnati indicate that the stressors arising from work in the clinic, where physicians are seeing patients one-on-one, can effectively be measured with hopes of improving patient care and physician job satisfaction.

Ronnie Horner, PhD, and C. Jeff Jacobson, PhD, both researchers in the department of public health sciences, say their studies, published in the online editions of the journal Medical Care on Oct. 29 and Nov. 9, showed that certain known measurement tools for assessing non-clinical work intensity can also be used to determine physician work intensity in clinical settings.

"Work intensity for physicians during office-based patient care affects quality of care and patient safety as well as job satisfaction and reimbursement,” says Horner. "There are existing intensity measures that have been used in previous studies of the work environment, but their validity in a clinical office setting hasn’t been established.”

Horner, Jerzy Szaflarski, MD, PhD, a researcher in the department of neurology and co-author on Horner’s study, and Jacobson studied two main instruments: the NASA-Task Load Index (NASA-TLX) and the Subjective Workload Assessment Technique (SWAT).

For Jacobson’s study, researchers used interviews and direct observations to obtain data.

"We wanted to document and describe subjective and observable work intensity dimensions for physicians in office-based clinical settings and examine them in relation to the measurement procedures and dimensions of the SWAT and NASA-TLX intensity measures,” he says.

The study included 19 doctors—five family physicians, five general internists, five neurologists and four surgeons. Each physician was asked to describe low- and high-intensity work responsibilities, patients and events.

To document time, physicians were observed during a routine workday. Notes and transcript data were analyzed to identify and classify different aspects of work intensity.

"We found that work intensity factors identified by physicians matched dimensions assessed by standard instruments of work intensity. Physicians also reported work intensity factors outside of the direct patient encounter,” Jacobson says, adding that across specialties, physician time spent in direct contact with patients averaged 61 percent for office-based services.

"Therefore, brief work intensity measures such as the SWAT and NASA-TLX can be used to assess work intensity in the office-based clinical setting,” he says. "However, because these measures define the physician work ‘task’ in terms of effort in the presence of the patient, substantial physician effort dedicated to pre- and post-service activities is not included in these findings.”

For Horner’s and Szaflarski’s study, the researchers used the NASA-TLX, SWAT and the Multiple Resources Questionnaire (MRQ) to measure perceived clinical work intensity associated with a given patient visit and for an entire half-day clinic; stress was measured by using the Dundee Stress State Questionnaire (DSSQ). Validity in the measurements was assessed by the correlation of the tools.

Fourteen providers from the same specialties—family medicine, internal medicine, neurology and surgery—were observed and assessed.

Researchers found that for the last patient encounter, there was a moderate to high correlation between the work intensity instruments' scores and low to moderate correlation with the distress subscale of the DSSQ.

"Provider personality was associated with reported levels of work intensity and stress,” Horner says. "Similar results were obtained when the entire clinic session was our reference.

"Therefore, existing measures of work intensity and stress appear to be valid for use in the clinical setting to generate evidence on perceived intensity and stress experienced by providers in the performance of medical services.”

Both Jacobson and Horner say more studies are needed to see if these measurements produce the same results or if the definition of measured tasks needs to be adapted to include the wider effort associated with complete patient care.

"If confirmed in larger studies, these instruments will provide a way of generating comparable information regarding the level of work intensity and stress associated with the performance of various medical services,” says Horner. "In turn, such information could help improve health care delivery, such as improved efficiency in practice organization and management.

"Improved delivery is anticipated to yield higher quality of care and greater patient safety. The new information may also guide the establishment of physician incentives that will be proportional to actual work performed.”

This project was funded in part by the American Academy of Neurology (AAN) and the American Academy of Dermatology (AAD).

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>