Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adults take their physical activity on the road

15.06.2010
New public health research by a Purdue University professor could help shed light on how the environment can influence physical activity, especially when it comes to where people live.

"We are not just measuring physical activity, but we are linking it to a location using small activity monitors and global positioning system devices," said Philip J. Troped, an assistant professor of health and kinesiology. "A better understanding of how neighborhood environments influence people's behaviors could help us to get more people to be physically active and healthy."

For example, a better understanding of where physical activity occurs and the characteristics of those areas could be used to develop more tailored intervention programs or messages to encourage physical activity at those locations, as well as to shape policy for urban planning and transportation systems.

"Research has shown that there is a positive relationship between characteristics of neighborhood-built environments and physical activity, but one of the limitations is that the data have been collected with devices that only measure activity, so assumptions are made that physical activity is mostly happening around where people live - and that may not be the case," he said.

Such built environments are humanmade and can reflect urban planning features such as how neighborhoods are designed, convenience of trails and parks, width of sidewalks, and the connectivity of transportation routes.

Troped and his research team found that most of the moderate to vigorous physical activity people participated in took place outside a 1-kilometer buffer zone around their home.

When moderate to vigorous physical activity occurred within 1 kilometer of a person's home, the buffer zone had a higher density of residential housing, more connected streets and a greater mix of residential and commercial land uses, which can allow people to walk to destinations such as stores.

"In future studies using GPS and activity monitors, we will try to move away from a focus on the area where people live to try to better understand the range of locations, near and far from home, where people are active and the characteristics of those environments," Troped said.

The research team fitted 148 people, ages 19-78, with activity monitors and GPS devices for four days - two weekdays and two weekend days - in the Boston metropolitan area. The activity monitors, also known as accelerometers, record the intensity of activity each minute during a person's waking hours. As the intensity for each minute increases, such as from walking to running, the activity count for each minute increases. If a person is sitting in a car or just fidgeting, then a low level of activity is reported. The global positioning systems device was worn whenever the individual was outdoors or leaving the home.

The findings were published in April's American Journal of Preventive Medicine.

"We are really just scratching the surface on this type of research, but it's a start," Troped said. "More work needs to be done to identify areas where people are physically active and better understand the qualities of those areas that attract people to them. We also need to learn how this might differ by age and racial and ethnic background so we can use this information to develop interventions for different audiences."

In addition to Troped, the research team was composed of Jeffrey S. Wilson of Indiana University-Purdue University Indianapolis: Charles E. Matthews of the National Cancer Institute: Ellen K. Cromley of the Institute for Community Research in Hartford, Conn.; and Steven J. Melly of the Harvard School of Public Health.

The study was supported with funding from the Active Living Research Program, The Robert Wood Johnson Foundation and Purdue's College of Liberal Arts.

Writer: Amy Patterson Neubert, 765-494-9723, apatterson@purdue.edu

Source: Philip Troped, 765-496-9486, ptroped@purdue.edu

Amy Patterson Neubert | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>