Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study of strong ground motion may show need to modify building codes

08.12.2011

"In recent decades, population growth and scarcity of undeveloped metropolitan land have changed urban land use patterns and placed an increasing number of people and infrastructure in areas susceptible to topographic effects during earthquakes," said Adrian Rodriguez-Marek, at Virginia Tech.

"A major impediment towards understanding and realistically modeling topographic effects has been the lack of a statistically significant number of seismic recordings from densely instrumented sites with topographic features," Rodriguez-Marek added.

New testing conducted in a steep, mountainous region of Utah, using mining induced events, is providing a new set of data necessary for better predictions.

The testing is part of a large National Science Foundation (NSF) funded project involving five institutions across the United States, with Rodriguez-Marek of Virginia Tech serving as the principal investigator. This project focuses on increasing the understanding of the effects of surface topography on earthquake ground motions and seismic risk. The goal of the project is to develop design-ready tools to account for the effect of topography on ground motions.

In addition to Virginia Tech, the University of Washington, Georgia Tech, the University of Arkansas, and the University North Carolina at Charlotte are also participants. The project uses the Network for Earthquake Engineering Simulation (NEES) equipment sites at the University of California at Davis and at the University of Texas at Austin.

The first recordings included more than 50 mining-induced seismic events. Researchers from the University of Arkansas and the University of Texas at Austin gathered this first data.

According to Rodriguez-Marek, when the study is completed, researchers will have the necessary information to "modify building codes and to improve safety in the building environment."

Hillsides, ridges, and canyons are examples of sites where researchers do not have current reliable data to know how seismic shaking will be impacted by the ground features.

Although researchers have documented effects through observations of damage and the collapse of structures near the top of steep hills or ridges, "proper quantification of these effects" has not occurred because the areas did not have "densely-instrumented sites to record data," Rodriguez-Marek explained.

The test site in Utah stood about 2,000 feet above the long-wall mining activities of Deer Creek Coal Mine. The researchers placed 13, three-component sensors in a 3-D array over the ridge and hillside. Data was collected 24 hours a day for seven consecutive days. The 50 seismic events represented the first phase of a multiphase project. Additional data will be gathered at the Utah site this summer, and from tests at a geotechnical centrifuge at the University of California at Davis.

"As real earthquakes are infrequent and unpredictable, the shallow and predictable seismic activity induced by the stress relief that results from long-wall mining provides a good source of seismic energy for this study," Rodriguez-Marek said.

"Preliminary results clearly show higher ground motion intensity near the crest or peak of the slope," he added. The early data was used to calibrate mathematical models of the effects and to design the second phase of testing that occurred in the summer of 2011. Results are still being processed.

This NSF study includes a new bridge to the doctorate program geared toward increased participation and education of Hispanic students in the field of earthquake engineering.

"We hope to use our approach and collaboration among universities to serve as a model for increasing diversity in large, collaborative science, engineering, and technology research projects. Students from the University of Puerto Rico at Mayaguez have participated in summer studies at the University of Arkansas, and one student is currently enrolled at the University of North Carolina at Charlotte," Rodriguez-Marek said.

The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links

* James Martin to head up federal study of East Coast earthquake<http://www.vtnews.vt.edu/articles/2011/09/090111-engineering-jamesmartinearthquake.html> (http://www.vtnews.vt.edu/articles/2011/09/090111-engineering-jamesmartinearthquake.html)

* Virginia Tech's Russ Green to lead government team to New Zealand earthquake area<http://www.vtnews.vt.edu/articles/2011/03/030211-engineering-greennewzealandearthquake.html> (http://www.vtnews.vt.edu/articles/2011/03/030211-engineering-greennewzealandearthquake.html)

This story can be found on the Virginia Tech News website:
http://www.vtnews.vt.edu/articles/2011/12/120811-engineering-motionbuildingcodes.html

Lynn A. Nystrom | VT News
Further information:
http://www.eng.vt.edu

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Establishing metastasis

25.09.2018 | Health and Medicine

Artificial intelligence to improve drug combination design & personalized medicine

25.09.2018 | Health and Medicine

Small modulator for big data

25.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>