Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's Hard to Bring Down the Electric Grid

13.10.2010
Last March, the U.S. Congress heard testimony about a scientific study in the journal Safety Science. A military analyst worried that the paper presented a model of how an attack on a small, unimportant part of the U.S. power grid might, like dominoes, bring the whole grid down.

Members of Congress were, of course, concerned. Then, a similar paper came out in the journal Nature the next month that presented a model of how a cascade of failing interconnected networks led to a blackout that covered Italy in 2003.

These two papers are part of a growing reliance on a particular kind of mathematical model -- a so-called topological model -- for understanding complex systems, including the power grid.

And this has University of Vermont power-system expert Paul Hines concerned.

"Some modelers have gotten so fascinated with these abstract networks that they've ignored the physics of how things actually work -- like electricity infrastructure," Hines says, "and this can lead you grossly astray."

For example, the Safety Science paper came to the "highly counter-intuitive conclusion," Hines says, that the smallest, lowest-flow parts of the electrical system -- say a minor substation in a neighborhood -- were likely to be the most effective spots for a targeted attack to bring down the U.S. grid.

"That's a bunch of hooey," says Seth Blumsack, Hines's colleague at Penn State.

Hines and Blumsack's recent study, published in the journal Chaos on Sept. 28, found just the opposite. Drawing on real-world data from the Eastern U.S. power grid and accounting for the two most important laws of physics governing the flow of electricity, they show that "the most vulnerable locations are the ones that have most flow through them," Hines says. Think highly connected transformers and major power-generating stations. Score one point for common sense.

"If the government takes these topological models seriously," Hines says, "and changes their investment strategy to put walls around the substations that have the least amount of flow -- it would be a massive waste of resources."

At the speed of light
Many topological models are, basically, graphs of connected links and nodes that represent the flows and paths within a system. When a node changes or fails, its nearest connected neighbor will often change or fail next. This abstraction has provided profound insights into many complex systems, like river networks, supply chains, and highway traffic. But electricity is strange and the US electric grid even stranger.

In August of 2003 a blackout started in Ohio and then spread to New York City. Cleveland went down and soon Toronto was affected. The blackout was able to jump over long distances.

"The way topological cascades typically occur -- is they're more like real dominoes," says Hines, an assistant professor in UVM's College of Engineering and Mathematical Sciences. "When you push a domino the only thing that can fall is the one next to it. Whereas in a power grid you might push one domino and the next one to fall might be a hundred miles away."

That's because, "when a transmission line fails -- instantly, at nearly the speed of light, everything changes. Everything that is connected will change just a little bit," Hines says, "But in ways that are hard to predict." This strangeness is compounded by the fact that the U.S. electric grid is more an intractable patchwork of history than a rational design.

Which is why he and Blumsack decided to "run a horse race," he says, between topological models and a physics-based one -- applied to the actual arrangement of the North American Eastern Interconnect, the largest portion of the U.S. electric grid.

Using real-world data from a 2005 North American Electric Reliability Corporation test case, they compared how vulnerable parts of the grid appeared in the differing models. The topological measures -- so-called "characteristic path lengths" and "connectivity loss" between nodes -- came up with dramatically different and less accurate results than a model that calculated blackout size driven by the two rules that most influence actual electric transmissions -- Ohm's and Kirchhoff's laws.

In other words, the physics horse won. Or, as their paper concludes, "evaluating vulnerability in power networks using purely topological metrics can be misleading," and "results from physics-based models are more realistic and generally more useful for infrastructure risk assessment." Score one for gritty reality.

The value of unpredictability
An important implication of Hines's work, funded by the National Science Foundation, is that electric grid is probably more secure that many people realize -- because it is so unpredictable. This, of course, makes it hard to improve its reliability (in another line of research, Hines has explored why the rate of blackouts in the United States hasn't improved in decades), but the up-side of this fact is that it would be hard for a terrorist to bring large parts of the grid down by attacking just one small part.

"Our system is quite robust to small things failing -- which is very good," he says, "Even hurricanes have trouble taking out power systems. Hurricanes do cause power system failures, but they don't often take out the whole system."

Blumsack agrees. "Our paper confirms that it would be possible for somebody who wanted to do something disruptive to the power grid to do so," he says. "A lot of the infrastructure is out in the open," which does create vulnerability to planned attack. "But if you wanted to black out half of the U.S., it will be much more difficult than some of these earlier models imply," he says.

"If you were a bad guy, there is no obvious thing to do to take out the power system," Hines says. "What we learned from doing the simulations is that if you take out the biggest substation, with the most flow, you get the biggest failure on average. But there were also a number of cases where, even if you took out the biggest one, you don't get much of a blackout."

"It takes an incredible amount of information," he says, "to really figure out how to make the grid fail."

Joshua Brown | EurekAlert!
Further information:
http://www.uvm.edu
http://www.uvm.edu/~uvmpr/?Page=News&storyID=17119

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>