Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Peking Man' older than thought; somehow adapted to cold

16.03.2009
A new dating method has found that "Peking Man" is around 200,000 years older than previously thought, suggesting he somehow adapted to the cold of a mild glacial period.

A dating method developed by a Purdue University researcher allowed a more accurate determination of the age of the Zhoukoudian, China, site of remains of Homo erectus, commonly known as "Peking Man." The site was found to be 680,000-780,000 years old. Earlier estimates put the age at 230,000-500,000 years old.

Darryl Granger, the Purdue professor of earth and atmospheric sciences who developed the dating method, co-led the study with Guanjun Shen of China's Nanjing Normal University. They analyzed four stone tools and six sediment samples from the site.

"This was the first dating of this kind to be used in an early hominid site in China," Granger said. "Many of the existing data methods rely on the availability of volcanic rock, which the Zhoukoudian site does not have. This method provides a new tool to provide insight into places where dating was previously limited."

A paper detailing the work is featured on the cover of the current issue of Nature.

Susan C. Antón, associate professor in the Center for the Study of Human Origins at New York University said this discovery indicates "Peking Man" was somehow behaviorally able to cope with the cold environment.

"There is evidence that Homo erectus had physically adapted to the cold, but they probably also had to be doing something in terms of behavior to handle the cold of a glacial period in northern China," she said. "There isn't good evidence of fire or any kind of skins or clothing, but evidence of such things doesn't last long and wouldn't be recorded particularly well in the archeological record. It doesn't mean they didn't have them, but we don't have a definitive answer."

Homo erectus is considered to be the ancestor species to humans and the first species that left Africa and moved into Asia. The "Peking Man" site, discovered in the late 1920s, was among the first found for Homo erectus and shaped the thoughts on the age and behavior of the species, Antón said.

Granger used aluminum-26 and beryllium-10 radioisotopic dating, which is based on radioactive decay in the mineral quartz. As cosmic rays penetrate into rocks at the Earth's surface, chemical reactions produce these isotopes of aluminum and beryllium. If the rocks are then buried, the isotopes are no longer produced and those existing begin to decay. The rate of decay can tell researchers when the rocks were deposited in a site, he said.

Granger developed the method in 1997 and first used it for geomorphology work in caves in Virginia, but he recognized it could be used at hominid sites important to understanding human evolution. A colleague in China contacted Granger and asked him to examine the Zhoukoudian site.

The Purdue Rare Isotope Measurement Laboratory, which is funded by the National Science Foundation, is one of only two laboratories in the nation with equipment capable of performing this kind of dating. The facility contains an accelerator mass spectrometer that can perform ultra-sensitive analyses to measure low levels of trace elements in a sample.

Uranium-based methods of dating had been used at the site, but it appears the results had underestimated the ages, probably due to uranium dissolved in groundwater, Granger said.

Co-authors of the paper include Guanjun Shen and Bin Gao of the College of Geographical Sciences at Nanjing Normal University and Xing Gao of the Institute of Vertebrate Paleontology and Paleoanthropology at the Academia Sinaca in Beijing.

The research team had difficulties in separating quartz from the sediment samples, and Shen and Gao got their entire department in on the work, Granger said. The sediment contained about 1 percent quartz, and the dating method requires pure white quartz.

"They ended up hand separating these bits of quartz the size of grains of sand," he said. "It took about eight hours to separate 2 grams of the pure white quartz needed, and each sample required 40 to 60 grams. Luckily the stone tools we analyzed were made only of white quartz."

Granger and Shen next plan to work on other poorly dated hominid sites in China.

Elizabeth Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>