Researchers create better methods to detect E. coli

Lance Noll, master's student in veterinary biomedical science, Greensburg; T.G. Nagaraja, university distinguished professor of diagnostic medicine and pathobiology; and Jianfa Bai, assistant professor in the Kansas State Veterinary Diagnostic Laboratory, are leading a project to improve techniques for detecting pathogenic Shiga toxin-producing E. coli O157:H7. A U.S. Department of Agriculture Coordinated Agriculture Project grant is funding the work.

The researchers are part of a College of Veterinary Medicine team studying preharvest food safety in beef cattle. Noll has developed and validated a molecular assay that can detect and quantify major genes specific for E. coli O157.

“Developing a method to detect E. coli before it can potentially contaminate the food supply benefits the beef industry by preventing costly recalls but also benefits the consumer by ensuring the safety of the beef supply,” Noll said.

The newly developed test is a molecular assay, or polymerase chain reaction, that detects bacteria based on genetic sequences, which are the bacteria's “fingerprints,” Nagaraja said. The test is rapid and less labor-intensive than existing detection methods. The method can be automated and test many samples in a short period of time.

The test can be used in a diagnostic or research laboratory to accurately detect E. coli and can help with quality control in cattle facilities.

“The novelty of this test is that it targets four genes,” Nagaraja said. “We are constantly working on finding better and more sensitive ways to detect these pathogens of E. coli in cattle feces.”

To develop the diagnostic test, Noll and Nagaraja worked with two Kansas State University molecular biologists: Xiaorong Shi, research assistant of diagnostic medicine and pathobiology, and Bai.

“Beef cattle production is a major industry in Kansas and Kansas State University has a rich tradition in the research of beef cattle production and beef safety,” Noll said. “As a graduate student in veterinary biomedical sciences, I am proud to be a member of a multidisciplinary team in the College of Veterinary Medicine that aims to make beef a safe product for the consumers.”

Noll was named a winner at the 11th annual Capitol Graduate Research Summit this spring for his research project and poster, “A four-plex real-time PCR assay for the detection and quantification of Escherichia coli O157 in cattle feces.”

Media Contact

T.G. Nagaraja Eurek Alert!

Weitere Informationen:

http://www.k-state.edu

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Customized programming of human stem cells

Induced pluripotent stem cells (iPS) have the potential to convert into a wide variety of cell types and tissues. However, the “recipes” for this conversion are often complicated and difficult…

Electronic skin has a strong future stretching ahead

A material that mimics human skin in strength, stretchability and sensitivity could be used to collect biological data in real time. Electronic skin, or e-skin, may play an important role…

Fast-moving gas flowing away from young star caused by icy comet vaporisation

A unique stage of planetary system evolution has been imaged by astronomers, showing fast-moving carbon monoxide gas flowing away from a star system over 400 light years away, a discovery…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close