Evolvability could be a driving force in drug resistance

Not only has life evolved, but life has evolved to evolve.

That’s the conclusion drawn by two Rice University scientists who have designed a computer simulation to test the idea that evolvability — the likelihood of genetic mutation — is a trait that can itself be favored or disfavored through the process of natural selection.

The results of the study appear in the Aug. 10 issue of Proceedings of the National Academy of Sciences.

Researchers Michael Deem, the John W. Cox Professor of Bioengineering and professor of physics and astronomy, and David Earl, Deem’s post-doctoral research fellow, drew their conclusions from a sophisticated computer simulation that recorded how much and how rapidly proteins mutated based on external changes in their environment. As the researchers ramped up the frequency and severity of environmental changes — imagine rapid shifts between heat waves and cold snaps or heavy rains and droughts — they saw an increased likelihood of survival among proteins that mutated more frequently.

“Selection for evolvability would help explain a growing body of experimental results including the evolution of drug resistance in bacteria, the fact that some immune system cells mutate much more rapidly than other cells in our bodies, as well as why some bacteria and higher-order organisms have a tendency to transpose or swap relatively long sequences of DNA,” said Deem.

Traditionally, a significant number of evolutionary biologists have discounted the idea that evolvability is subject to natural selection, in part because the idea that evolution acts upon the mechanism that causes evolution seems to violate the basic scientific principle that an event cannot precede its own cause.

But Deem and Earl argue that causal violations need not occur. For one thing, there are several different ways that genetic mutations occur. Random changes along the DNA chain are now understood to be only one way that organisms evolve. Mutations also occur based on genetic recombination, genetic transposition and horizontal gene transfer. With these mechanisms, relatively large chunks of genetic code are shuffled or substituted for one another along the DNA chain.

Deem and Earl’s argument centers on the idea that the ability to reorder genes or to cause large-scale genetic change are themselves genetic traits, traits that are subject to selection like any others.

The upshot of this is that many observations within evolutionary biology that were heretofore considered evolutionary happenstance or accidents, may in fact be explained by selection for evolvability.

Two primary examples of this can be found in the escalating “arms race” that has been documented between pathogens and the immune systems in people and other higher-order vertebrates. Deem and Earl argue that wide variation among bacteria and other antigens has put selective pressure on our immune systems to rapidly adapt methods of identifying and attacking invaders. Similar observations on the rapid mutability among flu viruses and other invading pathogens provide additional evidence, they said.

“The implication is that the drugs we have developed to fight invading pathogens also confer selective pressure on the evolvability of the pathogens themselves,” Earl said. “In drug design, it is important to consider this and to look for ways to minimize or counteract this driving force for drug resistence.”

Media Contact

Jade Boyd EurekAlert!

Further information:

http://www.rice.edu

All news from this category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Researchers confront optics and data-transfer challenges with 3D-printed lens

Researchers have developed new 3D-printed microlenses with adjustable refractive indices – a property that gives them highly specialized light-focusing abilities. This advancement is poised to improve imaging, computing and communications…

Research leads to better modeling of hypersonic flow

Hypersonic flight is conventionally referred to as the ability to fly at speeds significantly faster than the speed of sound and presents an extraordinary set of technical challenges. As an…

Researchers create ingredients to produce food by 3D printing

Food engineers in Brazil and France developed gels based on modified starch for use as “ink” to make foods and novel materials by additive manufacturing. It is already possible to…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close