Researchers create lung cancer ’cluster bombs’

The butcher, the baker, and the candlestick maker may be more famous, but the pharmacist, the engineer, and the doctor may be onto something big.

The latter group has combined resources and knowledge to create a novel way to deliver a new lung cancer treatment. The new system, which uses “nanoparticle cluster bombs,” has proven effective in treating cancerous lung cells in vitro (in a petri dish), it was reported today in the International Journal of Pharmaceuticals. The research team from the University of Alberta will conduct in vivo tests (in live specimens) early this year, with plans for clinical trials to follow.

“Based on what we’ve been able to do so far, we have practical hopes that a new lung delivery platform for lung cancer can be established,” said Dr. Raimar Loebenberg, a professor of pharmacy at the U of A.

The three researchers – Loebenberg; Dr. Warren Finlay, a U of A mechanical engineering professor; and Dr. Wilson Roa, a U of A oncology professor – have applied for a patent on the lung cancer nanoparticle drug delivery system.

Loebenberg explained that the drug sits in powder form in the inhaler, which is similar to the device that asthmatics use. However, the difference between regular drugs and “nanoparticle cluster bombs,” Loebenberg said, comes when the powder arrives in the lungs, where it dissolves into nanoparticles upon contact with moisture in the lung -usually mucous.

Each grain of drug powder contains “a few thousand nanoparticles,” Finlay explained. “Once the nanoparticles are active in the lung they have a tremendous advantage over regular drugs, because they are better able to do exactly what we want them to.”

The idea is that the nanoparticles can be programmed to escape immune system surveillance like a Trojan Horse, and carry designer drugs that target cancer cells while leaving healthy cells alone.

“This drug and this delivery system have a lot of potential–there are a lot of different things we can do as we’re able to control where and when the nanoparticles release their payload,” said Finlay, who also has a patent pending on a new inhaler to go with the nanoparticle drug platform. “This platform system may be just the beginning. We’re looking at a lot of cool things we can do down the road.”

“At this point, we’re excited and encouraged about what we’ve done and what we could do in the future,” Loebenberg said, adding that the progress is due to the interdisciplinary collaboration between experts in three fields.

“This was not the result of one brain, but three,” he said. “At first, when we started working together we didn’t understand each other very well, but now I think we make a pretty good team, and I think we’ve created something that has good potential for a solution to lung cancer.”

The researchers can be reached at:
Dr. Warren Finlay 780-492-4707 or warren.finlay@ualberta.ca
Dr. Raimar Loebenbert 780-492-1255 or rloebenberg@pharmacy.ualberta.ca
Dr. Wilson Roa 780-432-8517 or wilsonro@cancerboard.ab.ca

Media Contact

Ryan Smith EurekAlert!

More Information:

http://www.ualberta.ca/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors