New advance to combat antibiotic-resistant pneumonia and malaria

Yeast used as surrogate model

New biochemical studies may hold clues to more powerful malaria and pneumonia treatments that could save more than 2 million lives worldwide. Using baker’s yeast as a surrogate disease model, researchers led by Dartmouth Medical School are exploring why enzymes in organisms that cause pneumonia and malaria are becoming increasingly resistant to antibiotics. This work could provide the answer to testing a new generation of drugs to combat these prevalent diseases.

Investigators used genetically modified yeast enzymes to pinpoint the mutations responsible for the antibiotic resistance of Pneumocystis jirovecii, which causes a type of pneumonia that is the most serious and prevalent AIDS-associated opportunistic infection and a threat to other immunocompromised patients, such as those undergoing therapy for cancer and organ transplantation. Pneumonia was responsible for more than 61,000 deaths in the US in 2001, according to the National Center for Health Statistics.

Appearing in the January 23 Journal of Biological Chemistry, the study examines the mutations responsible for disease’s tolerance toward atovaquone (ATV), a drug prescribed since 1995 that inhibits a respiratory enzyme called the cytochrome bc1 complex, that is essential for the pathogen’s survival. The lead author, Dr. Jacques Kessl, a research associate in biochemistry at DMS, said the study addresses recent evidence that indicates that pathogens that cause malaria and pneumonia are increasing resistance to ATV by developing mutations that prevent the drug from acting on the bc1 complex.

“We were able to isolate the genetic mutations that enable the pathogens to resist the drug when it is introduced to our yeast samples,” said Dr. Bernard Trumpower, professor of biochemistry at DMS and corresponding author of the study. “As the genetically modified yeast strains now display atovaquone resistance identical to that found in pneumocystis, these yeast can be used to design new drugs to make the appearance of resistance more unlikely.”

The study builds on prior research in Trumpower’s lab that used yeast enzymes as accurate and easily modified models to explore the resistance to ATV. It is not possible to grow pneumocystis enzymes in the large quantities necessary to isolate and study the cytochrome bc1 complex. Yeast is an excellent resource that can be manufactured in large quantities and can be easily modified to take on the qualities of more dangerous pathogens.

The researchers were able to genetically transfer into the yeast cytochrome b mutations like those found in the atovaquone resistant pneumocystis and found that these mutations caused the yeast to acquire similar resistance to ATV. Additionally, the team used a computer program to construct molecular models of the enzymes. “We can now visualize the different mutations in three dimensions to predict how the enzyme will react to different changes, like the introduction of a new antibiotic,” said co-author Benjamin Lange, a research assistant at DMS.

“We are infinitely further along than we were three years ago in terms of understanding the basis for resistance in these organisms,” said Trumpower. The co-authors of the study are Dr. Steven Meshnick from the University of North Carolina and Dr. Brigitte Meunier from the Wolfson Institute for Biomedical Research in London. The study was funded in part by the NIH.

Media Contact

Andy Nordhoff EurekAlert!

Weitere Informationen:

http://www.dartmouth.edu/

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Cyanobacteria: Small Candidates …

… as Great Hopes for Medicine and Biotechnology In the coming years, scientists at the Chair of Technical Biochemistry at TU Dresden will work on the genomic investigation of previously…

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin-Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional…

Big-hearted corvids

Social life as a driving factor of birds’ generosity. Ravens, crows, magpies and their relatives are known for their exceptional intelligence, which allows them to solve complex problems, use tools…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close