Doctors at Northwestern Memorial Are Studying Next Generation Surgery for Back Pain Sufferers

Surgeons at Northwestern Memorial Hospital (NMH) are enrolling people with degenerative disc disease in a research study to determine if new artificial discs will have the long-term durability to safely provide increased range of motion and less strain on the adjacent discs than spinal fusion.

Northwestern Memorial Hospital is one of approximately 30 sites around the country testing the Maverick artificial disc made from cobalt-chrome alloy. Currently, three artificial discs are being investigated in the United States. The newest, the Maverick artificial disc, is different in that it has two rather than three components, which are both made of metal rather than using any plastics or polymers. Some studies have shown that plastics and polymers can eventually wear down, and the resulting debris and the subsequent tissue reaction to such debris is the primary factor limiting the longevity of joint replacements.

“Artificial joints in knees and hips have been around for decades, but progress in material engineering and refinement of surgical techniques finally mean we can attempt disc replacement in as critical a location as near the spinal cord,” says Srdjan Mirkovic, M.D., a spine surgeon at Northwestern Memorial Hospital, assistant professor at Northwestern University’s Feinberg School of Medicine, and principal investigator for the study at NMH.

At Northwestern Memorial, the study is being done collaboratively with surgeons in both orthopedics and neurosurgery.

The Maverick lumbar disc is made from a cobalt-chrome alloy, a metal frequently used for orthopedic implants. When assembled, it can move side to side or back to front. “The concept is borrowed from a concept used in replacing joints in other parts of the body,” says John Liu, M.D., a neurosurgeon at Northwestern Memorial Hospital, assistant professor at the Feinberg School of Medicine and a co-investigator for the study.

“The Maverick disc has no plastic parts and uses a simple design with only two moving parts. We expect this will decrease degradation of the disc and reduce problems with the mechanics of the disc.”

Fusion, the current standard of care, is performed more than 200,000 times in the United States each year. “The reason we’re looking for alternatives to fusion is that, while fusing two or more vertebrae in the spine together can eliminate pain, it does have drawbacks,” explains Dr. Mirkovic. “The bone does not always heal or fuse correctly, and the recovery and rehabilitation periods are prolonged. The theory behind replacing the disc rather than using spinal fusion is that we may be able to preserve range of motion and decrease wear and tear at adjacent levels by distributing stress through the lower back.”

As with fusion, the diseased disc is removed. Then, rather than fusing the surrounding vertebrae together, the Maverick artificial disc is inserted in its place. A calcium-rich substance anchors it in place. “The recovery may be quicker because we don’t have to immobilize the lower back and wait for the bones to fully fuse as we do with fusion,” explains co-investigator Matthew Hepler, M.D., an orthopedic surgeon at Northwestern Memorial and assistant professor at the Feinberg School of Medicine.

Discs are gel-like cushions between vertebrae that absorb shock and act like ball bearings when people bend and twist. Degenerative disc disease is part of the natural process of growing older. As people age, their intervertebral discs lose their flexibility, elasticity and shock absorbing characteristics. It is a common problem for athletes, but can affect anyone.

The Maverick artificial disc is an investigational device and is limited by federal law to investigational use. The research study will compare the outcomes of participants who receive an artificial disc with those of participants who have lumbar fusion. About two-thirds of study participants will receive the artificial disc and the rest will receive spinal fusion. Northwestern Memorial is enrolling participants who have failed conservative treatments such as medications and local injections for at least six months and who have pain originating from the disc itself. To learn more, please visit www.back.com/clinicaltrial or contact Northwestern Memorial’s physician referral department at 312-926-8400 or 1-877-926-4NMH (4664).

About Northwestern Memorial Hospital

Northwestern Memorial Hospital (NMH) is one of the country’s premier academic medical centers and is the primary teaching hospital of Northwestern University’s Feinberg School of Medicine. Northwestern Memorial and its Prentice Women’s Hospital have 720 beds and more than 1,200 affiliated physicians and 5,000 employees. Providing care in a state-of-the-art facility, the hospital is recognized for its outstanding clinical and surgical advancements in such areas as cardiothoracic and vascular care, gastroenterology, neurology and neurosurgery, oncology, organ and bone marrow transplantation, and women’s health.

Northwestern Memorial was ranked as the nation’s 5 th best hospital by the 2002 Consumer Checkbook survey of the nation’s physicians and is listed in the majority of specialties in this year’s US News & World Report’s issue of “America’s Best Hospitals.” NMH is also cited as one of the “100 Best Companies for Working Mothers” by Working Mother magazine and has been chosen by Chicagoans year after year as their “most preferred hospital” in National Research Corporation’s annual survey.

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

An artificial cell on a chip

Researchers at the University of Basel have developed a precisely controllable system for mimicking biochemical reaction cascades in cells. Using microfluidic technology, they produce miniature polymeric reaction containers equipped with…

Specific and rapid expansion of blood vessels

Nature Communications: KIT researchers identify a new mechanism to control endothelial cell size and arterial caliber – basis for better treatment of heart infarct and stroke. Upon a heart infarct…

Climate change drives plants to extinction in the Black Forest in Germany

Climate change is leaving its mark on the bog complexes of the German Black Forest. Due to rising temperatures and longer dry periods, two plant species have already gone extinct…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close