Researchers Discover Effective Method For Killing Prostate Cancer Cells

By blocking a protein key to prostate cancer cell growth, researchers at the Lombardi Cancer Center at Georgetown University have discovered a way to trigger extensive prostate cancer cell death. This finding opens a new window for developing targeted treatments aimed at destroying prostate cancer cells before they have the opportunity to grow or spread. The study is published in the April 29 online issue of the Journal of Biological Chemistry.

“By preventing the Stat5 protein from being active, we were able to effectively kill human prostate cells,” said Marja Nevalainen, MD, PhD, assistant professor of oncology at Georgetown University Medical Center. “It’s similar to using a weed killer — poison ivy cannot take over the backyard if we don’t allow the leaves to breathe. If we stop this protein, which in turn stops the growth of prostate cancer cells, we are one step closer to managing the spread and growth of cancer in the prostate.”

Recent understanding of the correlation between prolactin, a hormone produced by male and female pituitary glands, and how it promotes growth of cells in the prostate led to this new study. Pioneering work by Dr. Nevalainen and colleagues established that prolactin serves as a local growth factor for prostate cells and that Stat5 is the specific signaling device for prolactin in prostate cells. In other words, Stat5 acts as an internal signaling device within the cell, receiving and sending messages of prolactin to the cell’s DNA.

In the new study, Nevalainen explored what happens if the activation of Stat5 in prostate cancer cells is blocked. Using human prostate cancer cell lines and viral gene delivery of an inhibitory mutant of Stat5, Nevalainen and her colleagues found that blocking the activity of this protein in prostate cancer cells will trigger extensive cell death.

“Once prostate cancer has metastasized, or spread, men have few treatment options other than chemotherapy and radiation,” said Nevalainen. “This finding could certainly lead to the development of new targeted therapeutics that can put the brakes on the growth of prostate cancer cells, allowing us to kill tumor cells, reduce the volume of tumors, and kill already metastasized cells.”

This study was funded by the National Cancer Institute (NCI).

Prostate cancer is the second leading cause of cancer death in men, exceeded only by lung cancer. According to the American Cancer Society, prostate cancer is the most common type of cancer found in American men, other than skin cancer. The ACS estimates that there will be about 220,900 new cases of prostate cancer in the United States in the year 2003. About 28,900 men will die of this disease. African-American men are disproportionately affected by the disease.

Media Contact

Lindsey Spindle georgetown news

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Seasonal Forecasts Improve Food Supply

EU project CONFER started – precipitation forecasts reduce the impacts of droughts and floods in East Africa. Developing more precise seasonal forecasts to improve food supply for a total of…

Geologists simulate soil conditions to help grow plants on Mars

Humankind’s next giant step may be onto Mars. But before those missions can begin, scientists need to make scores of breakthrough advances, including learning how to grow crops on the…

Theoreticians show which quantum systems are suitable for quantum simulations

A joint research group led by Prof. Jens Eisert of Freie Universität Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close