Further breakthroughs for breast cancer patients

While drugs such as tamoxifen have been a huge success in treating breast cancer, for a significant proportion of sufferers the drugs either fail to work, or after an initial successful response the patient relapses as the cancer acquires or possesses resistance to the drug.

However the researchers have discovered that inhibiting the activity of a certain protein in the cancer could prevent or even reverse the resistance to tamoxifen. The researchers noticed that when breast cancer cells grown in the laboratory develop resistance to tamoxifen, they show a large increase in the activity of a protein known as Src – and by stopping this activity resistance to tamoxifen can be prevented and even reversed.

Dr Stephen Hiscox of the Welsh School of Pharmacy, who led the research team and has just been appointed as one of the Cancer Research UK Cardiff University Research Fellows explained: “We have previously shown that when breast cancer cells become resistant to medicines such as tamoxifen in the laboratory they become more aggressive with an invasive behaviour. These are characteristics that can be promoted by Src, a protein which we have recently shown to be more active in tamoxifen-resistant than tamoxifen-sensitive breast cancer cells.

“As part of collaborative research between Tenovus and AstraZeneca, it was found that this aggressive, invasive behaviour could be reduced by treating the cells with a specific inhibitor of Src activity, AZD0530. Surprisingly, AZD0530 also made the tamoxifen-resistant cells sensitive to tamoxifen again. In addition, we found that co-treating the cells with a combination of tamoxifen and AZD0530 could actually prevent drug resistance occurring in the first place.”

The Src inhibitor AZD0530 developed by AstraZeneca is currently in early clinical trials. If the results seen in the laboratory can be reproduced in the clinic, this approach could offer a substantial clinical benefit to a large number of women with breast cancer, as Professor Robert Nicholson, Director of the Tenovus Centre for Cancer Research, explains:

“Whilst little is known about the mechanisms used by breast cancers to become resistant to common therapies such as tamoxifen, it remains a significant clinical problem. Therefore the ability to restore sensitivity to therapy, or to even prevent resistance arising in the first place, could be of huge benefit to a large number of breast cancer patients.”

Media Contact

Lowri Jones EurekAlert!

Weitere Informationen:

http://www.cardiff.ac.uk

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Nanomaterials enable dual-mode heating and cooling device

Device could cut HVAC energy use by nearly 20% in the US. Engineers at Duke University have demonstrated a dual-mode heating and cooling device for building climate control that, if…

What social distancing does to a brain

Scientists discover a neuropeptide that reflects the current state of a fish’s social environment. Have you recently wondered how social-distancing and self-isolation may be affecting your brain? An international research…

Scientists solve big limitation of stratospheric balloon payloads

How do you cool a large telescope to absolute zero while flying it from a huge balloon at 130,000 feet? Nearly all photons emitted after the Big Bang are now…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close