New nanomedicine slips through the cracks

Nanoparticles are typically too big to permeate some types of tissues (top). The researchers' new nanomachine is much smaller so can pass through these tissues (bottom). Credit: © 2019 Kanjiro Miyata

In a recent study in mice, researchers found a way to deliver specific drugs to parts of the body that are exceptionally difficult to access. Their Y-shaped block catiomer (YBC) binds with certain therapeutic materials forming a package 18 nanometers wide.

The package is less than one-fifth the size of those produced in previous studies, so can pass through much smaller gaps. This allows YBCs to slip through tight barriers in cancers of the brain or pancreas.

The fight against cancer is fought on many fronts. One promising field is gene therapy, which targets genetic causes of diseases to reduce their effect. The idea is to inject a nucleic acid-based drug into the bloodstream – typically small interfering RNA (siRNA) – which binds to a specific problem-causing gene and deactivates it.

However, siRNA is very fragile and needs to be protected within a nanoparticle or it breaks down before reaching its target.

“siRNA can switch off specific gene expressions that may cause harm. They are the next generation of biopharmaceuticals that could treat various intractable diseases, including cancer,” explained Associate Professor Kanjiro Miyata of the University of Tokyo, who jointly supervised the study. “However, siRNA is easily eliminated from the body by enzymatic degradation or excretion. Clearly a new delivery method was called for.”

Presently, nanoparticles are about 100 nanometers wide, one-thousandth the thickness of paper. This is small enough to grant them access to the liver through the leaky blood vessel wall. However some cancers are harder to reach.

Pancreatic cancer is surrounded by fibrous tissues and cancers in the brain by tightly connected vascular cells. In both cases the gaps available are much smaller than 100 nanometers. Miyata and colleagues created an siRNA carrier small enough to slip through these gaps in the tissues.

“We used polymers to fabricate a small and stable nanomachine for the delivery of siRNA drugs to cancer tissues with a tight access barrier,” said Miyata. “The shape and length of component polymers is precisely adjusted to bind to specific siRNAs, so it is configurable.”

The team's nanomachine is called a Y-shaped block catiomer, as two component molecules of polymeric materials are connected in a Y-shape formation. The YBC has several sites of positive charge which bind to negative charges in siRNA. The number of positive charges in YBC can be controlled to determine which kind of siRNA it binds with. When YBC and siRNA are bound, they are called a unit polyion complex (uPIC), which are under 20 nanometers in size.

“The most surprising thing about our creation is that the component polymers are so simple, yet uPIC is so stable,” concluded Miyata. “It has been a great but worthy challenge over many years to develop efficient delivery systems for nucleic acid drugs. It is early days, but I hope to see this research progress from mice to help treat people with hard-to-treat cancers one day.”

###

Journal article

Sumiyo Watanabe, Hyun Jin Kim, Hiroyuki Chaya, Satoshi Uchida, Satomi Ogura, Horacio Cabral, Yu Matsumoto, Hiroshi Fukuhara, Masaomi Nangaku, Kensuke Osada, Kanjiro Miyata, Kazunori Kataoka, et al. In vivo rendezvous of small nucleic acid drugs with charge-matched block catiomers to target cancers. Nature Communications. DOI: 10.1038/s41467-019-09856-w

Funding Program for World-Leading Innovative R&D in Science and Technology (FIRST) from JSPS. Center of Innovation (COI) Program from JST. JSPS KAKENHI Grants 24659411, 25000006, 25282141 and 17H02098. Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT) from AMED. Project for Cancer Research and Therapeutic Evolution (P-CREATE) from AMED. Basic Science and Platform Technology Program for Innovative Biological Medicine (IBIOMED) from AMED.

Related links

Miyata Laboratory

http://www.bmm.t.u-tokyo.ac.jp/english/index.html

Department of Materials Engineering

http://www.material.t.u-tokyo.ac.jp/e/

Graduate School of Engineering

https://www.t.u-tokyo.ac.jp/soee/

Research Contact

Associate Professor Kanjiro Miyata
Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN
Tel: +81-3-5841-0862
Email: miyata@bmw.t.u-tokyo.ac.jp

Press Contact

Mr. Rohan Mehra
Division for Strategic Public Relations, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact

Kanjiro Miyata
miyata@bmw.t.u-tokyo.ac.jp
81-358-410-862

 @UTokyo_News_en

http://www.u-tokyo.ac.jp 

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

An artificial cell on a chip

Researchers at the University of Basel have developed a precisely controllable system for mimicking biochemical reaction cascades in cells. Using microfluidic technology, they produce miniature polymeric reaction containers equipped with…

Specific and rapid expansion of blood vessels

Nature Communications: KIT researchers identify a new mechanism to control endothelial cell size and arterial caliber – basis for better treatment of heart infarct and stroke. Upon a heart infarct…

Climate change drives plants to extinction in the Black Forest in Germany

Climate change is leaving its mark on the bog complexes of the German Black Forest. Due to rising temperatures and longer dry periods, two plant species have already gone extinct…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close