New High-Performance Center Translational Medical Engineering

Gabriele Heinen-Kljajić, Minister for Science and Culture of Lower Saxony, (1. l.) and Reimund Neugebauer, President of the Fraunhofer-Gesellschaft (4. l.), have opened the High-Performance Center. Photo: Ralf Mohr; Fraunhofer ITEM

The new Center is aimed at bringing medical devices from the lab into phase I of clinical development. The focus is on active implants – i.e. electrical stimulation systems such as cochlear and retinal implants – and technological solutions for inhaled drug delivery. The latter are systematically developed towards smart drug/device combination products. The Center is funded by the Lower Saxony government and the Fraunhofer-Gesellschaft.

“Be it research on and development of implants, regenerative or personalized medicine – we want to contribute to overcoming the difficult step of transferring medical research results into clinical application, so that patients can benefit from novel products and methods. The new High-Performance Center Translational Biomedical Engineering provides a valuable link between research institutions and industry. It further strengthens the close network of research in the life sciences in Hannover,” said Gabriele Heinen-Kljajić, Minister for Science and Culture of Lower Saxony.

“In this Center, we will assist researchers, companies and entrepreneurs from the very phase of development. Dedicated manufacturing processes, for example, commonly represent substantial economic hurdles for small and medium-sized enterprises. Furthermore, medical devices equally have to go through quality assurance and risk assessment processes, before they can progress to clinical trials. We guide through the sophisticated processes of bringing devices from basic research to clinical application – we help them get through a bottleneck of translation, so to speak,” said Prof. Theodor Doll, head of the Center. Doll is holding a professorship instituted at the Hannover Medical School in collaboration with Fraunhofer ITEM. It directly connects the research done in the clusters of excellence REBIRTH and “Hearing4all” in Hannover and in the Lower Saxony consortium “Biofabrication for NIFE” with the translation expertise of Fraunhofer ITEM.

“Within a very short time, the High-Performance Centers of the Fraunhofer-Gesellschaft have proven to excellently support cooperation with universities and industry. They bring together industry, science, and applied research as a mediator in a kind of one-stop shop. The aim is to broadly promote research and education, training and continuing professional development, career opportunities for both young and senior scientists, and the transfer from lab to fab. The High-Performance Centers shall be established as infrastructure for this transfer,” explained Prof. Reimund Neugebauer, President of the Fraunhofer-Gesellschaft.

“The new Translational Biomedical Engineering Center provides an optimal opportunity to step into a top position in innovative product development in the medical sector. Together with our partners, we can provide decisive impetus for future innovations to industry, SMEs and start-ups in the medical sector.”

The current Medical Device Directive will soon be replaced by the much more stringent EU-wide Medical Device Regulation. “The Center can optimally assist companies and researchers in coping with the increased requirements,” says Doll.

Contact
Fraunhofer ITEM
Prof. Theodor Doll; +49-511-5350-248
theodor.doll@item.fraunhofer.de

Dr. Cathrin Nastevska; +49-511-5350-225
cathrin.nastevska@item.fraunhofer.de

https://www.item.fraunhofer.de/en/High-Performance-Center-Translational-biomedic…

Media Contact

Dr. Cathrin Nastevska Fraunhofer-Gesellschaft

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Insects help robots gain better grip

An international research team of biomechanics optimizes robotic movements inspired by insects. A whole generation of gripping robots has been developed using a design concept originally known from fish fins….

Simulations shed significant light on janus particles

Interfacial diffusion of nanoparticles strongly affected by their shape and surface coating. Named for a Roman god, Janus particles refer to nanoparticles that possess surfaces with two or more distinct…

How big does your quantum computer need to be?

What size will a quantum computer need to be to break Bitcoin encryption or simulate molecules? Quantum computers are expected to be disruptive and potentially impact many industry sectors. So…

Partners & Sponsors