New marker for raised intracranial pressure

New research published today in BioMed Central’s open access journal Critical Care shows that a retro-bulbar optic nerve sheath diameter (ONSD) above 5.82mm predicts raised ICP in 90% of cases.

The dural sheath surrounding the optic nerve communicates with the subarachnoid space and distends when ICP is elevated. Thomas Geeraerts, from Addenbrooke’s Hospital, Cambridge, led a team who investigated whether MRI can be used to precisely measure the diameter of the optic nerve and its sheath. He said, “Raised ICP is frequent in conditions such as stroke, liver failure and meningitis. It is associated with increased mortality and poor neurological outcomes. As a result, the early detection and treatment of raised ICP is critical, but often challenging. Our MRI-based technique provides a useful, non-invasive solution”.

The early detection of raised ICP can be very difficult when invasive devices are not available. As the authors report, “Clinical signs of raised ICP such as headache, vomiting and drowsiness are not specific and are often difficult to interpret. In sedated patients, clinical signs frequently appear well after the internal damage has been done. Optic nerve sheath distension could be an early, reactive and sensitive sign of raised ICP”.

The authors carried out a retrospective blinded analysis of brain MR images in a prospective cohort of 38 patients requiring ICP monitoring after traumatic brain injury and 36 healthy controls. Geeraerts said, “We found that ONSD measurement was able to provide a quantitative estimate of the likelihood of significant cranial hypertension”.

Media Contact

Graeme Baldwin alfa

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors