Dangerous bacteria communicate to avoid antibiotics

The bacteria Pseudomonas Aeruginosa growing from the center of a petri dish but steering clear of the six bacterial colonies along the edge which have been infected with the antibiotics. This happens because the six colonies are warning their conspecifics. Credit: University of Copenhagen

Researchers are now getting closer to this goal with a type of bacteria called Pseudomonas aeruginosa, which is notorious for infecting patients with the lung disease cystic fibrosis.

In a new study, researchers found that the bacteria send out warning signals to their conspecifics when attacked by antibiotics or the viruses called bacteriophages which kill bacteria.

'We can see in the laboratory that the bacteria simply swim around the 'dangerous area' with antibiotics or bacteriophages. When they receive the warning signal from their conspecifics, you can see in the microscope that they are moving in a neat circle around.

It is a smart survival mechanism for the bacteria. If it turns out that the bacteria use the same evasive manoeuvre when infecting humans, it may help explain why some bacterial infections cannot be effectively treated with antibiotics', says researcher Nina Molin Høyland-Kroghsbo, Assistant Professor at the Department of Veterinary and Animal Sciences and part of the research talent programme UCPH-Forward.

One United Organism

In the study, which is a collaboration between the University of Copenhagen and the University of California Irvine, researchers have studied the growth and distribution of bacteria in petri dishes. Here, they have created environments that resemble the surface of the mucous membranes where an infection can occur – as is the case with the lungs of a person with cystic fibrosis.

In this environment, researchers can see both how bacteria usually behave and how they behave when they are affected by antibiotics and bacteriophages.

'It is quite fascinating for us to see how the bacteria communicate and change behaviour in order for the entire bacterial population to survive. You can almost say that they act as one united organism', says Nina Molin Høyland-Kroghsbo.

Possibility of Blocking

The Pseudomonas aeruginosa bacteria are such a big problem that they are found in the top category 'critical' in the World Health Organization's list of bacteria, where new types of antibiotics are most urgently needed. Therefore, the researchers are excited to make new discoveries about the ways in which this type of bacteria behaves and survives.

'Infections with this type of bacteria are a major problem worldwide with many hospitalisations and deaths. That is why we are really pleased to be able to contribute new knowledge that can potentially be used to fight these bacteria', says Nina Molin Høyland-Kroghsbo.

However, she emphasises that it will still take a long time for the new knowledge to result in better treatment. The next step is to research how to affect the bacteria's communication and warning signals.

'This clears the way for the use of drugs in an attempt to prevent that the warning signal is sent out in the first place. Alternatively, you could design substances that may block the signal from being received by the other bacteria, and this could potentially make treatment with antibiotics or bacteriophage viruses more effective', concludes Nina Molin Høyland-Kroghsbo.

Media Contact

Nina Molin Høyland-Kroghsbo
nmhk@sund.ku.dk
45-51-80-41-11

http://healthsciences.ku.dk/ 

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

EEG ad tDCS chould serve as the basis of therapeutic strategies to combat newrological disorders. Image Credit: Institute of Science Tokyo

Using Electroencephalography to Improve Language Disorder Treatments

Researchers work towards an inexpensive and portable solution for treating aphasia  Electroencephalography (EEG) may offer a more accessible alternative to functional magnetic resonance imaging (fMRI) for guiding transcranial direct current…

The BioSCape team is poctured with NASA and South African aircraft. Image Credit: Jeremey Shelton/Fishwater Films

Measuring Life on Earth from Space: A Global Research Project

Measurements and data collected from space can be used to better understand life on Earth. An ambitious, multinational research project funded by NASA and co-led by UC Merced civil and…

NEJM study finds patients with blockages in medium-sized vessels in the brain who had endovascular treatment did not do any better and did not see any improvement compared to patients who had the standard of care. Dr. Michael Hill, MD, Dr. Mayank Goyal, MD, PhD (right). Image Credit: Riley Brandt, University of Calgary

Best Approach for Stroke in Medium-Sized Blood Vessels Identified

Calgary’s Stroke Program advancing science to improve care, treatment and outcomes for patients  University of Calgary’s Hotchkiss Brain Institute researchers with the Calgary Stroke Program at Foothills Medical Centre revolutionized…