Study Puts Freshwater Biodiversity on the Map for Planners and Policymakers

A team of UW-Madison researchers is hoping to help change that narrative and add a little ecology to economic decision making by forecasting how future policies regarding urban development and agricultural cultivation may impact aquatic ecosystems, which harbor astounding amounts of biodiversity and provide humans with vital goods and services.

“The idea is to see what future land use changes may look like under different policies, and think about where potential threats to freshwater would be most severe,” says Sebastián Martinuzzi, a post-doctoral researcher at the University of Wisconsin-Madison. “We are not trying to predict the ‘true’ future, but rather to visualize potential economic trends and their environmental consequences.”

Martinuzzi, who works in Professor Volker Radeloff’s lab in the Department of Forest and Wildlife Ecology, is lead author of a report entitled “Land Use Change and Freshwater Conservation,” published Oct. 15 in the journal “Global Change Biology.” In the study, a team of UW ecologists and collaborating economists mapped out various economic development scenarios and connected them to impacts on freshwater species diversity across the United States.

Every acre of crops put into production and each paved cul-de-sac in a new subdivision can change how water moves across the land, its temperature, and the levels of sediment and pollutants flowing into downstream freshwater ecosystems.

Using computer modeling and GIS mapping, Martinuzzi and the team developed four different scenarios to help illustrate future human endeavors. In their models, the researchers found that the news isn’t all bad. Crop cover is actually projected to go down under certain policy scenarios in the Midwest, which could signal an opportunity to purchase fallow fields for conservation purposes. However, in places like California and the southeastern U.S., urbanization is likely going to be a big stressor that could portend a tough future for fishes and amphibians.

The study was also able to put a number on the give-and-take of economic and ecological considerations. For example, under a “business as usual” scenario where policies remain as they are today, 34 percent of watersheds are expected to be impacted by urban development while, in an “urban containment” scenario, only 13 percent of watersheds would be affected as the spread of urban areas is minimized.

“At a minimum, we hope this can help policy makers or planners think about ways we could minimize the impact from future land development,” says Stephanie Januchowski-Hartley, from UW-Madison’s Center for Limnology and a contributing author of the paper. “If a certain amount [of urban development or crop cover] is going to push 10 or 20 percent of freshwater ecosystems beyond a healthy threshold, then we, as a society, have to start asking ourselves if that is something that we’re all willing to live with.”

Adam Hinterthuer, 608-890-2187, hinterthuer@wisc.edu

Media Contact

Adam Hinterthuer Newswise

More Information:

http://www.wisc.edu

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

3D laser nanoprinters become compact

Researchers of the Cluster of Excellence 3D Matter Mode to Order show how 3-dimensional nanostructures can be printed using compact desktop devices – publication in Nature Photonics. Lasers in conventional…

Study introduces framework to understand new class of curved lattice materials

A new study from Swansea University has introduced a framework to calculate the material properties of a new class of two-dimensional curved hexagonal lattices that could be used in the…

Planetary scientists discover brief presence of water in Arabia Terra on Mars

Team studied thermal inertia to understand how rock layers were formed. As part of a team of collaborators from Northern Arizona University and Johns Hopkins University, NAU PhD candidate Ari…

Partners & Sponsors