Species Richness – a false friend? Scientists want to improve biodiversity assessments

Biodiversity of a meadow in the Austrian Alps. Photo: Gernot Kunz

A growing number of species are under threat of extinction – in particular due to global environmental changes. Political instruments such as the International Convention on Biological Diversity or the EU's Marine Strategy Framework Directive aim to mitigate this biodiversity crisis.

In practice, taking the number of species (species richness) as a simple metric for determining the state of an ecosystem seems an obvious approach. “But this metric has its pitfalls because it doesn't fully reflect the changes in the system,” says the Oldenburg biodiversity expert Hillebrand points out who is also the lead author of the study.

On the contrary, according to the scientists' model calculations, negative influences on an ecosystem do not automatically result in a reduction in species richness. Conversely, the number of species in a system does not automatically increase as soon as an ecosystem recovers from human impact. The reason for this is: “Species richness is a result of the balance between the immigration and the extinction of species.”

However, these two processes do not occur at the same speed, Hillebrand explains. A few individuals of a species can quickly migrate into a local habitat and colonise it, but it may take several generations for a species to be replaced by a new, more competitive species, or to die out as a result of changed conditions.

“This means you can't reliably say, on the basis of short-term trends, whether more or fewer species will be left in an ecosystem over a long period of time,” Hillebrand stresses, adding: “So species richness can be a false friend.”

In their publication the scientists therefore recommend closer monitoring of how many species are migrating into a system, how many are leaving it, and how many species are becoming more or less abundant within the system. As an example the scientists used this method to analyse long-term measurements from various ecosystems – such as data on drifting microalgae (phytoplankton) from the mud flats of the Dutch Wadden Sea and the lakes of North America, as well as data from grassland ecosystems on six different continents.

“In extreme cases, the majority of species in an ecosystem could be replaced by new species. But if you only look at the number of species, the so-called species richness, that number doesn’t change at all”, says Prof. Dr. Jonathan Chase of the German Centre for Integrative Biodiversity Research (iDiv) and the Martin Luther University Halle-Wittenberg. “Therefore, species richness alone can be a misleading metric and can obscure what is really going on in an ecosystem.”

For their analyses the researchers explicitly used data gathered by conservationists in environmental monitoring programmes. In this way the scientists want to ensure that their tool can be used with the available resources, which in practice are often limited. “We hope that in this way we can build a bridge between the basic research and nature conservation in practice,” Hillebrand says.

Publication: Helmut Hillebrand, Bernd Blasius et al. (2017). Biodiversity change is uncoupled from species richness trends – consequences for conservation and monitoring. Journal of Applied Ecology. DOI: 10.1111/1365-2664.12959

http://www.hifmb.de
http://www.icbm.de
http://www.idiv.de

Media Contact

Dr. Corinna Dahm-Brey idw - Informationsdienst Wissenschaft

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

New, better coronavirus rapid test

Researchers at the Paul Scherrer Institute PSI and the University of Basel have developed a rapid test for Covid-19. Its novel functional principle promises reliable and quantifiable results concerning a…

Climate change and wildfires could increase ozone hole

Smoke from wildfires could increase ozone depletion in the upper layers of the atmosphere and thus further enlarge the ozone hole over the Arctic. This was recognized according to data…

Method for automated type detection within lamp waste streams for recycling

EucoLight, the European Association of collection and recycling organisations for Waste Electrical and Electronic Equipment (WEEE) lamps and lighting, has carried out successfully a study with Fraunhofer IZM on the…

Partners & Sponsors