Zoologists challenge longstanding theory that ‘eyespots’ mimic the eyes of predators’ enemies

Many animals possess protective markings to avoid predation, including patterns to reduce the risk of detection (camouflage), to indicate that the animal is toxic or inedible (‘warning colours’), or to mimic another animal or object (‘mimicry’ and ‘masquerade’). In addition, many creatures such as butterflies, moths, and fish possess two or more pairs of circular markings, often referred to as ‘eyespots’. Many eyespots are effective in startling or intimidating predators, and can help to prevent or stop an attack. For the past 150 years it has been assumed that this is because they mimic the eyes of the predator’s own enemies.

However, recent work by University of Cambridge zoologists, Martin Stevens, Chloe Hardman, and Claire Stubbins, indicates that this widely-held hypothesis has no experimental support.

Stevens, Hardman, and Stubbins tested the response of wild avian predators to artificial moths, created from waterproof paper. Specific patterns, such as intimidating eyespots of different shapes, sizes and number, and with different levels of eye mimicry, were printed on to the paper using a high quality printer. These ‘moths’ were then pinned to trees of various species at a height of one to three metres in the mixed deciduous Madingley Woods in Cambridgeshire, UK. Attached to each of the artificial moths was an edible mealworm as a temptation for woodland birds such as the blue tits, great tits, blackbirds, and house sparrows.

The zoologists discovered that artificial moths with circular markings survived no better than those with other conspicuous features and that the features of eyespots which most encouraged predators to avoid them are large size, a high number of spots, and conspicuousness in general.

As Dr Stevens explains, ‘the birds were equally likely to avoid artificial moths with markings such as bars and squares as they were to avoid those with two eye-like markings. This leads us to conclude that eyespots work because they are highly conspicuous features, not because they mimic the eyes of the predators’ own enemies. This suggests that circular markings on many real animals need not necessarily, as most accounts claim, mimic the eyes of other animals.’

[1] Conspicuousness, not eye mimicry, makes ‘‘eyespots’’ effective antipredator signals (Martin Stevens, Chloe J. Hardman, and Claire L. Stubbins) Behavioral Ecology doi:10.1093/beheco/arm162

Media Contact

Dr Martin Stevens alfa

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Creating good friction: Pitt engineers aim to make floors less slippery

Swanson School collaborators Kurt Beschorner and Tevis Jacobs will use a NIOSH award to measure floor-surface topography and create a predictive model of friction. Friction is the resistance to motion…

Synthetic tissue can repair hearts, muscles, and vocal cords

Scientists from McGill University develop new biomaterial for wound repair. Combining knowledge of chemistry, physics, biology, and engineering, scientists from McGill University develop a biomaterial tough enough to repair the…

Constraining quantum measurement

The quantum world and our everyday world are very different places. In a publication that appeared as the “Editor’s Suggestion” in Physical Review A this week, UvA physicists Jasper van…

Partners & Sponsors