New mathematical model can help save endangered species

This is the cover photo for article. Credit: Blake Meyer on Unsplash

The risk of extinction varies from species to species depending on how individuals in its populations reproduce and how long each animal survives. Understanding the dynamics of survival and reproduction can support management actions to improve a specie's chances of surviving.

Mathematical and statistical models have become powerful tools to help explain these dynamics. However, the quality of the information we use to construct such models is crucial to improve our chances of accurately predicting the fate of populations in nature.

“A model that over-simplifies survival and reproduction can give the illusion that a population is thriving when in reality it will go extinct.”, says associate professor Fernando Colchero, author of new paper published in Ecology Letters.

Colchero's research focuses on mathematically recreating the population dynamics by better understanding the species's demography. He works on constructing and exploring stochastic population models that predict how a certain population (for example an endangered species) will change over time.

These models include mathematical factors to describe how the species' environment, survival rates and reproduction determine to the population's size and growth. For practical reasons some assumptions are necessary.

Two commonly accepted assumptions are that survival and reproduction are constant with age, and that high survival in the species goes hand in hand with reproduction across all age groups within a species.

Colchero challenged these assumptions by accounting for age-specific survival and reproduction, and for trade-offs between survival and reproduction. This is, that sometimes conditions that favor survival will be unfavorable for reproduction, and vice versa.

For his work Colchero used statistics, mathematical derivations, and computer simulations with data from wild populations of 24 species of vertebrates. The outcome was a significantly improved model that had more accurate predictions for a species' population growth.

Despite the technical nature of Fernando's work, this type of model can have very practical implications as they provide qualified explanations for the underlying reasons for the extinction. This can be used to take management actions and may help prevent extinction of endangered species.

###

The study is published in the journal Ecology Letters led by Associate Professor Fernando Colchero from Department of Mathematics and Computer Science and the Interdisciplinary Center on Population Dynamics (CPop) at the University of Southern Denmark. The study was carried out in collaboration with with CPop members Asoc. Profs. Owen R. Jones and Dalia A. Conde from the Biology Department at SDU, and Annette Baudisch from the Faculty of Social Sciences, together with collaborators from over 20 institutions around the world.

Media Contact

Majken Brahe Ellegaard Christensen
majken@sdu.dk

 @NATsdu

http://www.sdu.dk/en/om_sdu/fakulteterne/naturvide 

Alle Nachrichten aus der Kategorie: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Flash graphene rocks strategy for plastic waste

Rice University lab detours potential environmental hazard into useful material. Plastic waste comes back in black as pristine graphene, thanks to ACDC. That’s what Rice University scientists call the process…

Towards next-generation molecule-based magnets

Magnets are to be found everywhere in our daily lives, whether in satellites, telephones or on fridge doors. However, they are made up of heavy inorganic materials whose component elements…

Order in the disorder …

… density fluctuations in amorphous silicon discovered Silicon does not have to be crystalline, but can also be produced as an amorphous thin film. In such amorphous films, the atomic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close