Urbanization exposes French cities to greater seismic risk

“Considering that the seismic hazard is stable in time, we observe that the seismic risk comes from the rapid development of urbanization, which places at the same site goods and people exposed to hazard” said Philippe Gueguen, co-author and senior researcher at Université Joseph Fourier in Grenoble, France. The paper appears today in the journal Seismological Research Letters (SRL).

Local authorities rely on seismic vulnerability assessments to estimate the probable damage on an overall scale (such as a country, region or town) and identify the most vulnerable building categories that need reinforcement. These assessments are costly and require detailed understanding of how buildings will respond to ground motion.

Old structures, designed before current seismic building codes, abound in France, and there is insufficient information about how they will respond during an earthquake, say authors. The last major earthquake in France, which is considered to have moderate seismic hazard, was the 1909 magnitude 6 Lambesc earthquake, which killed 42 people and caused millions of euros of losses in the southeastern region.

The authors relied on the French national census for basic descriptions of buildings in Grenoble, a city of moderate seismic hazard, to create a vulnerability proxy, which they validated in Nice and later tested for the historic Lambesc earthquake.

The research exposed the effects of the urbanization and urban concentrations in areas prone to seismic hazard.

“In seismicity regions similar to France, seismic events are rare and are of low probability. With urbanization, the consequences of characteristic events, such as Lambesc, can be significant in terms of structural damage and fatalities,” said Gueguen. “These consequences are all the more significant because of the moderate seismicity that reduces the perception of risk by local authorities.”

If the 1909 Lambesc earthquake were to happen now, write the authors, the region would suffer serious consequences, including damage to more than 15,000 buildings. They equate the likely devastation to that observed after recent earthquakes of similar sizes in L'Aquila, Italy and Christchurch, New Zealand.

Media Contact

Nan Broadbent EurekAlert!

More Information:

http://www.seismosoc.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Advancing materials science with the help of biology and a dash of dish soap

High-speed X-ray free-electron lasers have unlocked the crystal structures of small molecules relevant to chemistry and materials science, proving a new method that could advance semiconductor and solar cell development….

Zeolite nanotube discovery made by researchers at Georgia Tech

Zeolites, which are crystalline porous materials, are very widely used in the production of chemicals, fuels, materials, and other products.  So far, zeolites have been made as 3D or 2D…

Impossible material made possible inside a graphene sandwich

The design of new materials allows for either improved efficiency of known applications or totally new applications that were out of reach with the previously existing materials. Indeed, tens of…

Partners & Sponsors