Stalagmites May Predict Next Big One along the New Madrid Seismic Zone

While the 1811-12, magnitude 8 New Madrid earthquakes altered the course of the Mississippi River and rung church bells in major cities along the East Coast, records of the seismic zone’s previous movements are scarce.

Thick layers of sediment have buried the trace of the NMSZ and scientists must search for rare sand blows and liquefaction features, small mounds of liquefied sand that squirt to the surface through fractures during earthquakes, to record past events. That’s where the stalagmites come in.

The sand blows are few and far between, said Keith Hackley, an isotope geochemist with the Illinois State Geological Survey. In contrast, caves throughout the region are lined with abundant stalagmites, which could provide a better record of past quakes. “We’re trying to see if the initiation of these stalagmites might be fault-induced, recording very large earthquakes that have occurred along the NMSZ,” he said.

Hackley and co-workers used U-Th dating techniques to determine the age of stalagmites from Illinois Caverns and Fogelpole Cave in southwestern Illinois. They discovered that some of the young stalagmites began to form at the time of the 1811-12 earthquakes.

Hackley is scheduled to present preliminary results of the study in a poster on Sunday, 5 October, at the 2008 Joint Meeting of the Geological Society of America (GSA), Soil Science Society of America (SSSA), American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and Gulf Coast Association of Geological Societies (GCAGS), in Houston, Texas, USA.

Water slowly trickles through crevices in the ceiling of a cave and drips onto the floor. Each calcium carbonate-loaded drip falls on the last, and a stalagmite slowly grows from the bottom up. Time is typically recorded in alternating light and dark layers – each pair represents a year.

When a large earthquake shakes the ground, old cracks may seal and new ones open. As a result, some groundwater seeping through the cave ceiling traces a new pattern of drips – and, eventually, stalagmites – on the cave floor. Thus it is possible that each new generation of stalagmites records the latest earthquake.

The scientists use fine drills, much like those used by dentists, to burrow into the stalagmites to collect material for dating. In addition to the 1811-12 earthquakes, their investigation has recorded seven historic earthquakes dating as far back as almost 18,000 years before the present. Understanding the NMSZ’s past, including whether quakes recur with any regularity, will help the scientists predict the potential timing of future quakes.

In coming months, Hackley and his colleagues plan to expand the study, collecting stalagmites from caves across Indiana, Missouri and Kentucky. They hope that the new data will help to fill in more of the missing history of the NMSZ.

**WHEN & WHERE**
Sunday, 5 October, 8:00 AM – 4:45 PM (authors scheduled from 3:00-4:45 PM)
George R. Brown Convention Center: Exhibit Hall E (poster, booth 136).
View abstract, paper 147-8, at “Paleo-Seismic Activity from the New Madrid Seismic Zone Recorded in Stalagmites. A New Tool for Paleo-Seismic History”
**CONTACT INFORMATION**
For on-site assistance during the 2008 Joint Annual Meeting, 5-9 October, contact Christa Stratton or Sara Uttech in the Newsroom, George R. Brown Convention Center, Room 350B, +1-713-853-8329.
After the meeting, contact:
Keith Hackley
Isotope Geochemistry, Illinois State Geological Survey
+1-217-244-2396
hackley@isgs.uiuc.edu

Media Contact

Christa Stratton EurekAlert!

Weitere Informationen:

http://www.geosociety.org

Alle Nachrichten aus der Kategorie: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Grow faster, die sooner: How growth rates influence the fitness of bacteria

“The fitness of bacteria is more complex than expected,” explains Ulrich Gerland, professor for the theory of complex biosystems at the Technical University of…

Spintronics: Researchers show how to make non-magnetic materials magnetic

In solid-state physics, oxide layers only a few nanometres thick are known to form a so-called two-dimensional electron gas. These thin layers, separated from…

Caterpillars of the wax moth love eating plastic: Fraunhofer LBF investigates degradation process

Within the Framework of a research project on the chemical imaging analysis of plastic digestion in caterpillars (RauPE), a team from Fraunhofer LBF used…