No simultaneous warming of northern and southern hemispheres as a result of climate

However, Svante Björck, a climate researcher at Lund University in Sweden, has now shown that global warming, i.e. simultaneous warming events in the northern and southern hemispheres, have not occurred in the past 20 000 years, which is as far back as it is possible to analyse with sufficient precision to compare with modern developments. Svante Björck’s study thus goes 14 000 years further back in time than previous studies have done. “What is happening today is unique from a historical geological perspective”, he says.

Svante Björck has gone through the global climate archives, which are presented in a large number of research publications, and looked for evidence that any of the climate events that have occurred since the end of the last Ice Age 20 000 years ago could have generated similar effects on both the northern and southern hemispheres simultaneously. It has not, however, been possible to verify this. Instead, he has found that when, for example, the temperature rises in one hemisphere, it falls or remains unchanged in the other.

“My study shows that, apart from the larger-scale developments, such as the general change into warm periods and ice ages, climate change has previously only produced similar effects on local or regional level”, says Svante Björck.

As an example, let us take the last clear climate change, which took place between the years 1600 and 1900 and which many know as the Little Ice Age. Europe experienced some of its coldest centuries. While the extreme cold had serious consequences for agriculture, state economies and transport in the north, there is no evidence of corresponding simultaneous temperature changes and effects in the southern hemisphere. The climate archives, in the form of core samples taken from marine and lake sediments and glacier ice, serve as a record of how temperature, precipitation and concentration of atmospheric gases and particles have varied over the course of history, and are full of similar examples.

Instead it is during ‘calmer’ climatic periods, when the climate system is influenced by external processes, that the researchers can see that the climate signals in the archives show similar trends in both the northern and southern hemispheres.

“This could be, for example, at the time of a meteorite crash, when an asteroid hits the earth or after a violent volcanic eruption when ash is spread across the globe. In these cases we can see similar effects around the world simultaneously”, says Svante Björck.

Professor Björck draws parallels to today’s situation. The levels of greenhouse gases in the atmosphere are currently changing very rapidly. At the same time, global warming is occurring.

“As long as we don’t find any evidence for earlier climate changes leading to similar simultaneous effects on a global scale, we must see today’s global warming as an exception caused by human influence on the earth’s carbon cycle”, says Svante Björck, continuing: “this is a good example of how geological knowledge can be used to understand our world. It offers perspectives on how the earth functions without our direct influence and thus how and to what extent human activity affects the system.”

For more information, please contact Professor Svante Björck, Department of Earth and Ecosystem Sciences, Lund University, tel.: +46 46 222 7882, mobile: +46 703 352494, email:

Media Contact

Megan Grindlay idw

Alle Nachrichten aus der Kategorie: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Hyperbolic metamaterials exhibit 2T physics

3D nonlinear ferro-fluid-based hyperbolic metamaterials may contribute to ultra-fast all-optical hyper-computing. Metamaterials–nanoengineered structures designed for precise control and manipulation of electromagnetic waves–have enabled such innovations as invisibility cloaks and super-resolution…

40% of O’ahu, Hawai’i beaches could be lost by mid-century

The reactive and piecemeal approach historically used to manage beaches in Hawai’i has failed to protect them. If policies are not changed, as much as 40% of all beaches on…

Thin and ultra-fast photodetector sees the full spectrum

Researchers have developed the world’s first photodetector that can see all shades of light, in a prototype device that radically shrinks one of the most fundamental elements of modern technology….

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.