Rock hounds sleuth rise of Earth’s atmosphere

“CSI-like” techniques, used on minerals, are revealing the steps that led to evolution of the atmosphere on Earth. President of the Mineralogical Society of America, Douglas Rumble, III, of the Carnegie Institution’s Geophysical Laboratory, describes the suite of techniques and studies over the last five years that have led to a growing consensus by the scientific community of what happened to produce the protective ozone layer and atmosphere on our planet. His landmark paper on the subject appears in the May/June American Mineralogist.

“Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes–atomic variants of elements with the same number of protons but different numbers of neutrons,” explained Rumble. “Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or fingerprints, of the oxygen isotopes 16O, 17O, and 18O. Weathering, ground water, and direct deposition of atmospheric aerosols change the ratios of the isotopes in a rock revealing a lot about the past climate.” Rumble’s paper describes how geochemists, mineralogists, and petrologists are studying anomalies of isotopes of oxygen and sulfur to piece together what happened to our atmosphere from about 3.9 billion years ago, when the crust of our planet was just forming and there was no oxygen in the atmosphere, to a primitive oxygenated world 2.3 billion years ago, and then to the present.

The detective work involves a pantheon of scientists who have analyzed surface minerals from all over the globe, used rockets and balloons to sample the stratosphere, collected and studied ice cores from Antarctica, conducted lab experiments, and run mathematical models. The synthesis from the different fields and techniques points to ultraviolet (UV) light from the Sun as an important driving force in atmospheric evolution. Solar UV photons break up molecular oxygen (O2) to produced ozone (O3) leaving a tell-tale isotopic signature of excess 17O. The ozone layer began to form as the atmosphere gained oxygen, and has since shielded our planet from harmful solar rays and made life possible on Earth’s surface.

The discovery of isotope anomalies, where none were previously suspected, adds a new tool to research on the relationships between shifts in atmospheric chemistry and climate change. Detailed studies of polar-ice cores and exposed deposits in Antarctic dry valleys may improve our understanding of the history of the ozone hole.

Media Contact

Douglas Rumble, III EurekAlert!

More Information:

http://www.gl.ciw.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Prostate cancer organoids open path to precision oncology

A multi-institutional team of investigators led by bioengineer Ankur Singh has developed research tools that shed new light on a virtually untreatable form of prostate cancer, opening a pathway that may lead…

Experimental compound counters diabetic complications

An experimental compound reduced complications of type 1 and type 2 diabetes in mice – not by lowering blood sugar – but by countering its consequences: cell death, inflammation, and…

Taking new aim at COVID-19

The coronavirus’s tangled strands of RNA could offer new ways to treat people who get infected. To the untrained eye, the loops, kinks and folds in the single strand of…

Partners & Sponsors