NCAR model shows decrease in global dust by 2100

One of the first global-scale simulations of dust and climate from preindustrial times to the year 2100 projects a worldwide decrease in airborne dust of 20–63% by the end of this century. The computer model studies show less wind, more moisture, and enhanced vegetation in desert areas as carbon dioxide increases over the next century, keeping more of the world’s dust on the ground. Coauthor Natalie Mahowald of the National Center for Atmospheric Research presented the results this week at the American Geophysical Union’s annual meeting in San Francisco.

“Reductions in global dust levels could have a profound impact on future climate predictions,” says Mahowald. Dust helps to lower global temperature by reflecting sunlight, as well as by depositing iron in the ocean and thus fertilizing marine organisms that remove carbon dioxide from the atmosphere.

Mahowald and Chao Luo (University of California, Santa Barbara) combined NCAR’s global Climate System Model with other software specifically tailored to simulate dust under a variety of climate regimes. The climate changes are driven primarily by an increase in atmospheric carbon dioxide from 280 parts per million in 1890 (preindustrial) to 500 ppm by 2090–a scenario considered reasonable by the Intergovernmental Panel on Climate Change.

The NCAR simulation shows decreasing winds and increasing moisture across arid, low-lying regions such as the Sahara, which produce much of the world’s dust. It also includes the process through which a gradual increase in atmospheric carbon dioxide may stimulate photosynthesis of plants in arid regions, which in turn would reduce the extent of unvegetated areas and the dust they produce.

Mahowald and Luo examined six different scenarios for the interaction of plants and climate across each of three decades: 1880–1889 (preindustrial), 1990-1999, and 2090–2099. For the six scenarios, the decrease in extent of desert dust sources in 2090–2099 compared to 1990–1999 ranges from 0 to 39 percent. The decrease in how much dust gets entrained into the atmosphere is even more dramatic: from 20 to 63 percent, depending on the scenario.

The wide variation among scenarios highlights the uncertainty in this new area of research, says Mahowald. She believes that climate assessments such as those from the Intergovernmental Panel on Climate Change may be underestimating both the magnitude and the uncertainty of dust’s global impact on climate.

“There is substantial spread in the model projections for climate close to large arid regions such as the Sahel,” says Mahowald. “It is very difficult to predict whether particular regions will get wetter or drier.”

The research was funded by NASA and the National Science Foundation, NCAR’s primary sponsor.

Media Contact

Anatta EurekAlert!

Further information:

http://www.ucar.edu/ucar/

All news from this category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to the Homepage

Comments (0)

Write comment

Latest posts

A little friction goes a long way toward stronger nanotube fibers

Rice model may lead to better materials for aerospace, automotive, medical applications. Carbon nanotube fibers are not nearly as strong as the nanotubes they contain, but Rice University researchers are…

Light-induced twisting of Weyl nodes switches on giant electron current

Scientists at the U.S. Department of Energy’s Ames Laboratory and collaborators at Brookhaven National Laboratory and the University of Alabama at Birmingham have discovered a new light-induced switch that twists…

Acidification impedes shell development of plankton off the US West Coast

Shelled pteropods, microscopic free-swimming sea snails, are widely regarded as indicators for ocean acidification because research has shown that their fragile shells are vulnerable to increasing ocean acidity. A new…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close