New class of substances detected in atmospheric chemistry

Laboratory set-up of the free-jet flow experiment at TROPOS in Leipzig, with that direct evidence was provided for the first time that the formation of hydrotrioxides (ROOOH) also takes place under atmospheric conditions from the reaction of peroxy radicals (RO2) with hydroxyl radicals (OH).
Credit: Tilo Arnhold, TROPOS

International team reports on highly oxidized hydrotrioxides in SCIENCE.

An international research team has now succeeded in detecting hydrotrioxides (ROOOH) for the first time under atmospheric conditions. Until now, there was only speculation that these organic compounds with the unusual OOOH group exist. In laboratory experiments, their formation during the oxidation of important hydrocarbons, such as isoprene and alpha-pinene, have been clearly demonstrated. By means of quantum chemical calculations and model calculations, important data on this new class of substances have been estimated.

About 10 million metric tonnes per year of them are formed in the Earth’s atmosphere through isoprene oxidation. The lifetime of ROOOHs is estimated to be minutes to hours. Hydrotrioxides represent a hitherto unnoticed class of substances in the atmosphere, the effects of which on health and the environment need to be investigated, write the researchers led by the Leibniz Institute for Tropospheric Research (TROPOS) in the current issue of the renowned scientific journal SCIENCE.

Until now, there was only speculation about hydrotrioxides (ROOOH), that these organic compounds with the unusual OOOH group would exist. In laboratory experiments at TROPOS in Leipzig, their formation during the oxidation of important hydrocarbons, such as isoprene and alpha-pinene, could be clearly demonstrated now.
Credit: Tilo Arnhold, TROPOS

The lower layer of our earth’s atmosphere is a large chemical reactor in which several 100 million metric tonnes of hydrocarbons are converted each year, which ultimately leads to the formation of carbon dioxide and water. These hydrocarbons are emitted by forests or anthropogenic sources. A wide variety of oxidation processes occur, only some of which are well understood. One recent focus of atmospheric research is on hydrotrioxides (ROOOH). These are gaseous substances with a group consisting of three consecutive oxygen atoms “O” and a hydrogen atom “H”, which is bonded to an organic rest (R). Hydroperoxides (ROOH) with two oxygen atoms have long been known and proven. In the literature, it has previously been speculated that there could be substances in the atmosphere carrying not only two oxygen atoms (ROOH) but also three oxygen atoms (ROOOH). In organic synthesis, hydrotrioxides are used to form special oxidation products in the reaction with alkenes. However, these reactive and thermally unstable hydrotrioxides are produced there in organic solvents at very low temperatures around -80°C and further react. Whether this substance class also exists as a gas in the atmosphere at significantly higher temperatures was unknown until now.

In their study, researchers from the Leibniz Institute for Tropospheric Research (TROPOS), the University of Copenhagen and the California Institute of Technology (Caltech) have now been able to provide direct evidence for the first time that the formation of hydrotrioxides also takes place under atmospheric conditions from the reaction of peroxy radicals (RO2) with hydroxyl radicals (OH). The laboratory investigations were mainly performed at TROPOS in Leipzig in a free-jet flow tube at room temperature and a pressure of 1 bar air – combined with the use of very sensitive mass spectrometers. Additional experimental information, especially on the stability of the hydrotrioxides, was provided by the investigations at Caltech. Quantum chemical calculations were performed by the University of Copenhagen to describe the reaction mechanisms as well as the temperature- and photostability of hydrotrioxides. Global simulations from TROPOS with the chemistry-climate model ECHAM-HAMMOZ enabled an initial assessment of the effects on the Earth’s atmosphere.

“It is really exciting to show the existence of a universal new class of compounds formed from atmospherically prevalent precursors (RO2 and OH radicals),” reports Prof. Henrik G. Kjærgaard from the University of Copenhagen. “It is very surprising that these interesting molecules are so stable with such a high oxygen content. Further research is needed to determine the role of hydrotrioxides for health and the environment,” emphasises Dr. Torsten Berndt from TROPOS. “Our study has shown that direct observation of hydrotrioxides using mass spectrometry is feasible. This means that it is now possible to further investigate these compounds in different systems including, perhaps, the quantification of their abundance in the environment.” explains Prof. Paul O. Wennberg from Caltech.

The significance of the first successful detection of this new substance class “hydrotrioxides” will only become clear in the next few years. However, with the experimental proof and the current knowledge, the research study by Berndt et al. has laid first groundwork that should also awake the interest of other research groups.

Tilo Arnhold

Journal: Science
DOI: 10.1126/science.abn6012
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Hydrotrioxide (ROOOH) formation in the atmosphere
Article Publication Date: 27-May-2022
COI Statement: The authors declare that they have no competing interests.

Media Contact

Tilo Arnhold
Leibniz Institute for Tropospheric Research (TROPOS)
tilo@tropos.de
Office: 341-2717-7060

www.tropos.de

 

 

Media Contact

Tilo Arnhold
Leibniz Institute for Tropospheric Research (TROPOS)

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors