Hydrogen Storage for Cars?

Hydrogen is the fuel of the future. Unfortunately, one problem remains: Hydrogen is a gas and cannot easily be pumped into a tank like gasoline. Storage in the form of solid hydrides, chemical compounds of hydrogen and a metal or semimetal, are good storage materials in principle, but have not been well suited to automotive applications.

An American research team at the Ford Motor Company in Dearborn and the University of California, Los Angeles, has now developed a novel hydride that could be a useful starting point for the development of future automotive hydrogen-storage materials. As Jun Yang and his team report in the journal Angewandte Chemie, an “autocatalytic” reaction mechanism causes the composite made of three different hydrides to rapidly release hydrogen at lower temperatures and without dangerous by-products.

Certain hydrogen compounds, such as lithium borohydride (LiBH4 ) and magnesium hydride (MgH2), can release hydrogen and then take it up again. However, for automotive applications, they require temperatures that are too high to release hydrogen, the hydrogen release and uptake are far too slow, and decomposition reactions release undesirable by-products such as ammonia. In addition, these compounds can only be “recharged” under very high pressure and temperature conditions. The combination of two different hydrides (binary hydride) has previously been shown to improve things, as these compounds partly release hydrogen at lower temperatures than either of the individual components.

The researchers led by Yang went a step further and combined three hydrogen-containing compounds—lithium amide (LiNH2), lithium borohydride, and magnesium hydride—in a 2:1:1 ratio to form a ternary hydride. This trio has substantially better properties than previous binary materials.

The reason for this improvement is a complex sequence of reactions between the various components. The first reactions begin as soon as the starting components are ground together. Heating starts off more reactions, releasing the hydrogen. The mixture is “autocatalytic”, which means that one of the reactions produces the product cores for the following reaction, which speeds up the entire reaction sequence. The result is a lower desorption temperature; the release of hydrogen begins at 150 °C. In addition the hydrogen is very pure because neither ammonia nor any other volatile decomposition products are formed. Recharging the ternary hydride with hydrogen can be accomplished under moderate conditions.

Author: Jun Yang, Ford Motor Company, Dearborn (USA), mailto:jyang27@ford.com

Title: A Self-Catalyzing Hydrogen Storage Material

Angewandte Chemie International Edition, doi: 10.1002/anie.200703756

Media Contact

Jun Yang Angewandte Chemie

All latest news from the category: Automotive Engineering

Automotive Engineering highlights issues related to automobile manufacturing – including vehicle parts and accessories – and the environmental impact and safety of automotive products, production facilities and manufacturing processes.

innovations-report offers stimulating reports and articles on a variety of topics ranging from automobile fuel cells, hybrid technologies, energy saving vehicles and carbon particle filters to engine and brake technologies, driving safety and assistance systems.

Back to home

Comments (0)

Write a comment

Newest articles

Red Sea bioregions show changing blooms

Red Sea phytoplankton blooms change seasonally and interannually in response to climatic events. A KAUST study has analyzed satellite data over two decades and its findings will underpin other investigations…

Building better tools for biomanufacturing

A team of researchers from the Georgia Institute of Technology has developed an analytical tool designed to improve the biomanufacturing process of advanced cell-based therapies. Their Dynamic Sampling Platform provides…

The role of messenger RNA in DNA repair

University of Seville researchers participate in a study connecting the repair of DNA breaks and messenger RNA modifying factors. An organism’s genome could be compared to a complex system of…

Partners & Sponsors