Cereals use chemical defenses in a multifunctional manner against different herbivores

When wheat is attacked by aphids, the plant produces a less toxic form of benzoxazinoids, which regulates callose production. Callose makes it difficult for aphids to take up plant sap. Beibei Li and Tobias Züst / University of Bern, Switzerland

A team of scientists from the University of Bern (Switzerland) and the Max Planck Institute for Chemical Ecology and their partners have characterized multiple functions of benzoxazinoids in wheat:

The toxic form of the substances makes the plant directly resistant to lepidopteran larvae, whereas a less toxic form regulates indirect defense mechanisms against aphids. Scientists have identified the “switch” between these different functions as a methyltransferase enzyme, which is activated by caterpillar feeding.

This switch enables wheat plants to adapt their defense response to different herbivores. A comparison with maize shows that a methyltransferase also regulates defense processes in maize against different pest insects. However, the two enzymes in wheat and maize have evolved independently from each other (Science Advances, DOI: 10.1126/sciadv.aat6797, December 5, 2018).

In nature, plants are exposed to a multitude of enemies that feed on their leaves, stems and roots, or feast on their sap. In response to these threats, plants have evolved the capacity to produce secondary metabolites whose functions include preventing herbivores from feeding. Plants can use such defensive substances in a multifunctional manner.

A team of researchers led by Tobias Köllner from the Max Planck Institute for Chemical Ecology and Matthias Erb from the University of Bern has now characterized the function of benzoxazinoids in wheat. The researchers used previously obtained, detailed knowledge about the defensive functions of benzoxazinoids in maize.

In maize plants, the enzyme methyltransferase acts as a functional switch: it decides whether benzoxazinoids act as efficient toxins to protect the plant from caterpillar herbivory, or whether benzoxazinoids are less toxic, but induce callose production. Callose is used as a cell sealant that blocks sieve elements and makes it difficult for the aphids to suck phloem sap.

“Our approach was to introduce the maize switch into wheat and to permanently activate it. Together with our colleagues from the Leibniz Institute of Plant Genetics and Crop Plant Research, we made transgenic wheat plants which were no longer able to choose between toxin production and defense regulation, but constantly produced the toxic form of the benzoxazinoids. This enabled us to elucidate the functions of benzoxazinoids in wheat in detail,” explains Tobias Köllner.

The approach allowed for a thorough analysis of how switching between toxin production and defense regulation affects wheat resistance to lepidopteran larvae and aphids.

Moreover, the scientists were able to identify the corresponding switch in wheat and to analyze it from a biochemical and phylogenetic perspective. Although maize and wheat both produce benzoxazinoids — their most important defense, via the same, conserved core biosynthetic pathway — in both species, the genes responsible for switching between their toxic and regulative forms are only distantly related.

Thus, the two cereal species likely evolved this switch independently during the course of evolution. Scientists call this phenomenon “convergent evolution.”

“Convergent evolution is widespread in nature and results from the fact that different species evolve a solution for the same problem independently from each other. It is remarkable that two grasses which produce the same specialized defensive substances evolved the corresponding switch for their use independently of each other.

On one hand, this may be evidence that the ability to use benzoxazinoids for different functions has evolved relatively recently. On the other hand, it highlights the importance of the ability to adapt defense responses specifically to different herbivores.

In our opinion, what we are observing here is the emergence of new regulative mechanisms away from the conserved canon of phytohormones towards more specialized systems,” says Matthias Erb. “Interestingly, plants of the cabbage family also use defensive substances for callose regulation, suggesting that this type of multifunctionality is widespread in the plant kingdom.”

As a next step, the researchers would like to find out how benzoxazinoids control other defensive processes. They are particularly interested in finding an answer to whether there are receptors for benzoxazinoids. If so, these could well be classified as specialized hormones, thus further blurring the boundary between plant toxins and defense regulators. Ultimately, this research could contribute to answering why plants use toxins to regulate defenses in addition to classical plant hormones.

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de
Download of high resolution images via http://www.ice.mpg.de/ext/downloads2018.html

Prof. Dr. Matthias Erb, Tel. +41 31 631 86 68, E-Mail: matthias.erb@ips.unibe.ch, Institute of Plant Sciences, University of Bern, Switzerland

Dr. Tobias Köllner, Tel. +49 3641 57 1329, E-Mail: koellner@ice.mpg.de, Max Planck Institute for Chemical Ecology, Jena, Germany

Li, B., Förster, C., Robert, C. A. M., Züst, T., Hu, L., Machado, R. A. R., Berset, J.-D., Handrick, V., Knauer, T., Hensel, G., Chen, W., Kumlehn, J., Yang, P., Keller, B., Gershenzon, J., Jander, G., Köllner, T. G., Erb, M. (2018). Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals. Science Advances 4:eaat6797, DOI: 10.1126/sciadv.aat6797
https://doi.org/10.1126/sciadv.aat6797

Media Contact

Angela Overmeyer Max-Planck-Institut für chemische Ökologie

Further information:

http://www.ice.mpg.de/

All news from this category: Agricultural and Forestry Science

Back to the Homepage

Comments (0)

Write comment

Latest posts

Innovations through hair-thin optical fibres

Scientists at the University of Bonn have built hair-thin optical fibre filters in a very simple way. They are not only extremely compact and stable, but also colour-tunable. This means…

Artificial intelligence for sustainable agriculture

ZIM cooperation network on AI-based agricultural robotics launched The recently approved ZIM cooperation network “DeepFarmbots” met virtually for its official kick-off on November 25. The central goal of the network…

Teamwork in a molecule

Chemists at the University of Jena harness synergy effect of gallium Chemists at Friedrich Schiller University Jena have demonstrated the value of “teamwork” by successfully harnessing the interaction between two…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close