Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HomeScience ReportsReports and NewsPower and Electrical Engineering

Energy policies relating to alternative energy

Current energy policies are still based heavily on natural resources. Meanwhile, the trend is increasingly toward alternative resources, such as wind power.

It's only a matter of time before natural resources, such as petroleum, are depleted. Petroleum, a fossil-based energy source deposited across millions of years, is used to produce fuel or electricity. Taking stock of the fact that 260 billion barrels (one barrel = 159 liters) of oil were extracted over the last 11 years, it's evident that the world's petroleum resources will be depleted one day. New developments in solar or wind power are aimed at providing alternative energy sources that will enable us to maintain our current standard of living. Petroleum is also required by the chemical industry to manufacture special plastics.

The advantages and disadvantages of alternative energy sources

When discussing the subject of petroleum and alternative energy, one must bear the advantages and disadvantages in mind. Our resources are running short . Because we cannot count on petroleum for the future, there will come a time when everyone will rely on the efficiency of wind power and other alternative energy sources . Unlike petroleum, wind power can be managed to ensure that it constantly renews itself. Wind power meanwhile makes it possible to have enough resources to supply entire cities. Petroleum has the additional disadvantage of harming the environment through CO2 emissions. This has resulted in increasing demand for resources such as wind power. Wind power can be classified into different categories. A class 4 wind turbine can meanwhile provide resources in a much more efficient manner than petroleum resources for instance. In addition, unlike petroleum, resources such as wind power offer a decentralized energy supply. This means that in contrast to petroleum, the utilization of wind power does not require a large power plant. Instead, it makes "transporting" the energy easier and faster. Decentralized wind power entails a massive infrastructure change. Resources such as wind power certainly bring disadvantages when it comes to the environment, although they pale in comparison to the disasters that can result from petroleum. The utilization of our resources determines how we continue to maintain our standard of living. This makes it important to continue public discourse on the issues of wind power and petroleum.

Resource shortage

It's only a matter of time before there is no petroleum left. For this reason, from a resource standpoint we should already be moving toward heavy reliance on wind power instead of petroleum. After all, from a pure scientific point of view, new petroleum resources won't be available for millions of years. Unlike petroleum, wind power is a resource that will never run dry. In Germany alone, wind power is serving as a popular alternative resource to petroleum. The demand for wind power will increase in line with the consumption of petroleum. For this reason, it is imperative that we gradually move away from petroleum and make more use of wind power or other alternative energy resources. The environmental pollution caused by petroleum is reason enough for an environmentally-conscious society to use solar or wind power. In contrast to petroleum, wind power is significantly better for the environment and offers a unique resource balance.

Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Page anfang | 3 | 4 | 5 | 6 | 7 | ende

Researchers introduce novel heat transport theory in quest for efficient thermoelectrics

NCCR MARVEL researchers have developed a novel microscopic theory that is able to describe heat transport in very general ways, and applies equally well to ordered or disordered materials such as crystals or glasses and to anything in between. This is not only a significant first--no transport equation has been able so far to account simultaneously for these two regimes--it also shows, surprisingly, that heat can tunnel, quantum-mechanically, rather than diffuse away, like an atomic vibration.

The new equation will also allow the accurate prediction of the performance of thermoelectric materials for the first time. With ultralow, glass-like, thermal...

28.05.2019 | nachricht Read more

Electric-field-controlled superconductor-ferromagnetic insulator transition

High-temperature (Tc) superconductivity typically develops from antiferromagnetic insulators, and superconductivity and ferromagnetism are always mutually exclusive.

Recently, Xianhui Chen's group at University of Science and Technology of China observed an electric-field controlled reversible transition from superconductor...

28.05.2019 | nachricht Read more

ReMaP – Key to the energy systems of the future

Our energy system is changing: The permanent availability of energy in the right place at the right time is becoming more demanding. At the same time, digitalization offers us new tools for better controlling energy flows. A new joint energy research platform of ETH Zurich, the Paul Scherrer Institute (PSI) and Empa – ReMaP – aims at contributing to a better understanding of interconnected future energy systems.

On a sunny summer day what do we do with solar power if it cannot be used directly? Which storage solutions can (and should) be used? When does a conversion...

27.05.2019 | nachricht Read more

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

Researchers at Tokyo Institute of Technology have found a simple, yet highly versatile, way to generate "chaotic signals" with various features. The technique consists of interconnecting three "ring oscillators," effectively making them compete against each other, while controlling their respective strengths and their linkages. The resulting device is rather small and efficient, thus suitable for emerging applications such as realizing wireless networks of sensors.

Our ability to recreate the signals found in natural systems, such as those in brains, swarms, and the weather, is useful for our understanding of the...

22.05.2019 | nachricht Read more

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

Machine learning (ML), a form of artificial intelligence that recognizes faces, understands language and navigates self-driving cars, can help bring to Earth the clean fusion energy that lights the sun and stars. Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are using ML to create a model for rapid control of plasma -- the state of matter composed of free electrons and atomic nuclei, or ions -- that fuels fusion reactions.

The sun and most stars are giant balls of plasma that undergo constant fusion reactions. Here on Earth, scientists must heat and control the plasma to cause...

20.05.2019 | nachricht Read more

New flying/driving robot developed at Ben-Gurion University of the Negev

Research being presented at the International Conference on Robotics and Automation 2019 in Montreal on May 21

The first experimental robot drone that flies like a typical quadcopter, drives on tough terrain and squeezes into tight spaces using the same motors, has been...

20.05.2019 | nachricht Read more

Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy

Scientists have demonstrated a new bio-inspired material for an eco-friendly and cost-effective approach to recovering uranium from seawater.

A research team from the Department of Energy's Oak Ridge and Lawrence Berkeley National Laboratories, the University of California, Berkeley, and the...

17.05.2019 | nachricht Read more

New test rig components for faster development and validation

Numerical simulations have massively accelerated product development over the past few decades. A variety of scenarios can be tested in a short time and the number of necessary prototypes has been steadily reduced. Nevertheless, physical tests will not lose significance. Numerical models must be validated and approval testing must be carried out. In the project “Digitization in Testing Technology”, scientists from the Fraunhofer Institute for Structural Durability and System Reliability LBF have developed tunable test rig components and a mechanical hardware-in-the-loop approach.

The Results will present at the Automotive Testing Expo in Stuttgart, May 21-23, 2019 in hall 8, booth 8052.

What is the optimal combination of real and virtual world? The research team from Darmstadt developed tunable components and a mechanical hardware-in-the-loop...

16.05.2019 | nachricht Read more

Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

16.05.2019 | nachricht Read more

European Perovskite Initiative for the development of Perovskites based solar technology launched

Perovskite based solar cells have made tremendous progress over the last decade achieving outstanding lab-scale efficiencies of 24.2% early 2019 in single-junction architecture and to an astonishing 28% in Tandem (perovskite associated with crystalline silicon), turning it into the fastest-advancing solar technology to date. Perovskite technology will help further reducing costs and resource demands of solar electricity production, hence providing new capacity to tackle climate change and will offer the opportunity for the creation of jobs in Europe in the fast growing PV industry.

In the context where decarbonizing the energy-mix is becoming a priority challenge for European countries among others, European universities, research...

16.05.2019 | nachricht Read more
Page anfang | 3 | 4 | 5 | 6 | 7 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>