Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blasting off to Mercury and other planets with astronomy

Man has always been drawn to the discovery of alien worlds and planets. And this urge has reached its zenith thanks to astronomy and travel to alien planets.

Astronomy adds a whole new dimension to the scientific impulse to discover and conquer other planets and systems beyond earth's realm. Astronomy allows scientists to not only carry out earth-based observations of planets such as Mercury. It also provides the basis for the continual discovery of new galaxies and unknown planets. Astronomy has made huge advances, due in part to the exploration of Mercury. innovations-report provides continuous coverage of the general advances being made in astronomy, as well as those specific to the discovery of Mercury, in continuously updated articles and scientific reports about astronomy, Mercury and other planets and galaxies.

Scientific look at Mercury

innovations-report encompasses a comprehensive astronomy database filled with a rich assortment articles and reports on all areas of science, research and innovations. This of course includes a large selection of documents on physics and astronomy. Whether it's achievements in astronomy, the discovery of new planets or progress in the journey to Mercury, innovations-report provides readers all of the latest developments from numerous independent research sources on the subjects of "Mercury", "planets" and general astronomy.

Astronomy - an interdisciplinary field

Apart from finding the right documents and sources covering technical advances in astronomy, readers can also learn about the findings and thought processes of other disciplines (philosophy for instance) that are actively examining astronomy and its approaches, as well as plans for journeys to planets like Mercury. The database contains a large selection of free information and articles covering basic issues ranging from "How far is Mercury from earth? " to the composition of Mercury and other planets. The path to the various planets, be it Mars, Pluto or Mercury, is not necessarily light years removed. A visit to innovations-report leads the reader to remote worlds of astronomy, alien planets and galaxies, planets related to Mars and Mercury, through the Milky Way and into black holes. Or simply put, through the entire cosmos of astronomy.

How heavy is Mercury?

Determining the weight of a planet like Mercury would appear to be a difficult undertaking. After all, it's not as simple as placing a planet on a scale, whether it's Mercury or some other planet. Such aspects are nevertheless a part of astronomy. With innovations-report.com, readers can get an exciting look at the world of astronomy, Mercury and other planets. Among other information, you can find reports that explain how researchers go about calculating the weight and dimensions of Mercury and other planets. Astronomy does not involve dreaming. Instead, it has more to do with applying methods and strategies from the field of physics. The distance to the planets is a constant challenge for researchers. Those with an interest in astronomy can rely on innovations-report to discover how scientists tackle these challenges, what knowledge they have gained about planets such as Mercury and the progress toward journeys to other planets.

Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Latest News:

Page anfang | 3 | 4 | 5 | 6 | 7 | ende

When David poses as Goliath

A stripped helium star solves the massive black hole mystery

Stellar black holes form when massive stars end their life in a dramatic collapse. Observations have shown that stellar black holes typically have masses of...

10.01.2020 | nachricht Read more

LZH’s MOMA laser ready for the flight to Mars

One last time on Earth it has been turned on in France in December 2019. The next time the MOMA laser developed by the Laser Zentrum Hannover e.V. (LZH) is going into operation will be on Mars. The ExoMars rover into which the laser is integrated has now successfully passed the thermal vacuum tests at Airbus in Toulouse, France.

For 18 days the ExoMars rover Rosalind Franklin was subjected to thermal vacuum tests at Airbus. There, it had to withstand strong changes in temperature and...

10.01.2020 | nachricht Read more

Explosion or collapse? — Experiment on beta-decay sheds light on fate of intermediate-mass stars

A group of scientists, among them several from GSI Helmholtzzentrum für Schwerionenforschung and from Technical University of Darmstadt, succeeded to experimentally determine characteristics of nuclear processes in matter ten million times denser and 25 times hotter than the centre of our Sun. A result of the measurement is that intermediate-mass stars are very likely to explode, and not, as assumed until now, collapse. The findings are now published in the scientific magazine Physical Review Letters.

They stress the fascinating opportunities offered by future accelerator facilities like FAIR in understanding the processes defining the evolution of the...

10.01.2020 | nachricht Read more

New measurement of the universe's expansion rate strengthens call for new physics

Using cosmic lenses an international team of astrophysicists determined the universe's expansion rate, completely independent of any previous method. The researchers' result further strengthens a troubling discrepancy between the expansion rate calculated from measurements of the local universe and the rate as predicted from background radiation of the early universe. The new study adds evidence to the idea that new theories may be needed to explain the underlying physics.

Knowing the precise value for the Hubble constant, a measure for how fast the universe expands, is important for determining the age, size, and fate of our...

09.01.2020 | nachricht Read more

Freiburg researchers investigate ultrafast reaction of superfluid helium triggerd by extreme ultraviolet laser pulses

A team headed by Professor Frank Stienkemeier at Freiburg’s Institute of Physics and Dr. Marcel Mudrich, professor at the University of Aarhus in Denmark, has observed the ultrafast reaction of nanodroplets of helium after excitation with extreme ultraviolet radiation (XUV) using a free-electron laser in real time. The researchers have published their findings in the latest issue of Nature Communications.

Lasers generating high-intensity and ultra-short XUV and X-ray pulses give researchers new options for investigating the fundamental properties of matter in...

08.01.2020 | nachricht Read more

A new form of glass through molecular entanglement

Physicists at the University of Vienna in collaboration with the Max Planck Institute for Polymer Research have discovered a new type of glass formed by long, cyclic molecules. The scientists successfully demonstrated that by making parts of the rings more mobile, the rings become more strongly entangled and the molecular fluid glassifies. The novel “active topological glass” is presented in the latest issue of Nature Communications.

Glass materials are ubiquitous in everyday life, ranging from window panes to porcelain espresso cups. Even PET plastic bottles, made of long polymeric...

08.01.2020 | nachricht Read more

NASA's Hubble surveys gigantic galaxy

This majestic spiral galaxy might earn the nickname the "Godzilla galaxy" because it may be the largest known in the local universe. The galaxy, UGC 2885, is 2.5 times wider than our Milky Way and contains 10 times as many stars.

But it is a "gentle giant," say researchers, because it looks like it has been sitting quietly over billions of years, possibly sipping hydrogen from the...

07.01.2020 | nachricht Read more

Astronomers spot distant galaxy group driving ancient cosmic makeover

An international team of astronomers funded in part by NASA has found the farthest galaxy group identified to date. Called EGS77, the trio of galaxies dates to a time when the universe was only 680 million years old, or less than 5% of its current age of 13.8 billion years.

More significantly, observations show the galaxies are participants in a sweeping cosmic makeover called reionization. The era began when light from the first...

07.01.2020 | nachricht Read more

A Repeating Fast Radio Burst from a Spiral Galaxy

The Effelsberg 100-m radio telescope participated in the European VLBI Network (EVN) to observe a repeating Fast Radio Burst (FRB) and helped to pinpoint the FRB to a spiral galaxy similar to our own. Crucial to this work was the sensitivity of the Effelsberg telescope and its flexible pulsar instrument that aided the quick radio localisation. This FRB is the closest to Earth ever localised and was found in a radically different environment to previous studies. The discovery, once again, changes researchers’ assumptions on the origins of these mysterious extragalactic events.

One of the greatest mysteries in astronomy right now is the origin of short, dramatic bursts of radio light seen across the universe, known as Fast Radio...

07.01.2020 | nachricht Read more

Clusters of gold atoms form peculiar pyramidal shape

Clusters composed of a few atoms tend to be spherical. They are usually organized in shells of atoms around a central atom. This is the case for many elements, but not for gold! Experiments and advanced computations have shown that freestanding clusters of twenty gold atoms take on a pyramidal shape. They have a triangular ground plane made up of ten neatly arranged atoms, with additional triangles of six and three atoms, topped by a single atom [see figure where a model of twenty oranges is compared with the theoretical and experimental structure].

The remarkable tetrahedral structure has now been imaged for the first time with a scanning tunnelling microscope. This high-tech microscope can visualise...

06.01.2020 | nachricht Read more
Page anfang | 3 | 4 | 5 | 6 | 7 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>