Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blasting off to Mercury and other planets with astronomy

Man has always been drawn to the discovery of alien worlds and planets. And this urge has reached its zenith thanks to astronomy and travel to alien planets.

Astronomy adds a whole new dimension to the scientific impulse to discover and conquer other planets and systems beyond earth's realm. Astronomy allows scientists to not only carry out earth-based observations of planets such as Mercury. It also provides the basis for the continual discovery of new galaxies and unknown planets. Astronomy has made huge advances, due in part to the exploration of Mercury. innovations-report provides continuous coverage of the general advances being made in astronomy, as well as those specific to the discovery of Mercury, in continuously updated articles and scientific reports about astronomy, Mercury and other planets and galaxies.

Scientific look at Mercury

innovations-report encompasses a comprehensive astronomy database filled with a rich assortment articles and reports on all areas of science, research and innovations. This of course includes a large selection of documents on physics and astronomy. Whether it's achievements in astronomy, the discovery of new planets or progress in the journey to Mercury, innovations-report provides readers all of the latest developments from numerous independent research sources on the subjects of "Mercury", "planets" and general astronomy.

Astronomy - an interdisciplinary field

Apart from finding the right documents and sources covering technical advances in astronomy, readers can also learn about the findings and thought processes of other disciplines (philosophy for instance) that are actively examining astronomy and its approaches, as well as plans for journeys to planets like Mercury. The database contains a large selection of free information and articles covering basic issues ranging from "How far is Mercury from earth? " to the composition of Mercury and other planets. The path to the various planets, be it Mars, Pluto or Mercury, is not necessarily light years removed. A visit to innovations-report leads the reader to remote worlds of astronomy, alien planets and galaxies, planets related to Mars and Mercury, through the Milky Way and into black holes. Or simply put, through the entire cosmos of astronomy.

How heavy is Mercury?

Determining the weight of a planet like Mercury would appear to be a difficult undertaking. After all, it's not as simple as placing a planet on a scale, whether it's Mercury or some other planet. Such aspects are nevertheless a part of astronomy. With innovations-report.com, readers can get an exciting look at the world of astronomy, Mercury and other planets. Among other information, you can find reports that explain how researchers go about calculating the weight and dimensions of Mercury and other planets. Astronomy does not involve dreaming. Instead, it has more to do with applying methods and strategies from the field of physics. The distance to the planets is a constant challenge for researchers. Those with an interest in astronomy can rely on innovations-report to discover how scientists tackle these challenges, what knowledge they have gained about planets such as Mercury and the progress toward journeys to other planets.

Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Quantum Technology: Observation of a unique quantum state of matter

Researchers from the University of Stuttgart and from the Institut d’optique in Palaiseau have explored a unique state of matter, a so-called topological phase. Such a topologicial phase is the ground state of a quantum many-body system and exhibits unique properties. The collaboration between the group of Prof. Hans Peter Büchler in Stuttgart and the group of Prof. Antoine Browaeys in Palaiseau have for the first time observed such a phase in a quantum simulator, where the state of matter is realised in a well controlled enviroment and allows for the study of the unique properties. The research results are published in 1st August in Science.

Most states of matter are characterized by the concept of spontaneous symmetry breaking, e.g., the periodic arrangement of atoms in a solid breaks the...

12.08.2019 | nachricht Read more

Ultracold Quantum Particles Break Classical Symmetry

Experiments in quantum physics confirm theoretically predicted deviation

Many phenomena of the natural world evidence symmetries in their dynamic evolution which help researchers to better understand a system’s inner mechanism. In...

12.08.2019 | nachricht Read more

Using lasers to visualize molecular mysteries in our atmosphere

A new technique offers a direct way for scientists from varied fields to study fundamental molecular interactions

Invisible to the human eye, molecular interactions between gases and liquids underpin much of our lives, including the absorption of oxygen molecules into our...

09.08.2019 | nachricht Read more

800 billion degrees Celsius: temperatures as they occur in star collisions measured in the laboratory

They are among the hottest moments in cosmic events: the collisions of neutron stars in the universe, in which chemical elements are formed. With particle collisions in the accelerator scientists are able to create similar conditions at the GSI Helmholtzzentrum für Schwerionenforschung and the future FAIR accelerator center. Now, an international group of researchers at the HADES collaboration has succeeded for the first time in measuring the thermal electromagnetic radiation – the so-called black-body radiation – produced in this process. The results were recently published in the journal "Nature Physics".

The HADES detector system on the GSI and FAIR campus in Darmstadt, as tall as a house, provides researchers with exciting insights into the events of the...

09.08.2019 | nachricht Read more

Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

06.08.2019 | nachricht Read more

Turning water into ice in the quantum realm

When you pop a tray of water into the freezer, you get ice cubes. Now, researchers from the University of Colorado Boulder and the University of Toronto have achieved a similar transition using clouds of ultracold atoms.

In a study that will appear August 2 in the journal Science Advances, the team discovered that it could nudge these quantum materials to undergo transitions...

05.08.2019 | nachricht Read more

Hubble uncovers a 'heavy metal' exoplanet shaped like a football

How can a planet be "hotter than hot?" The answer is when heavy metals are detected escaping from the planet's atmosphere, instead of condensing into clouds.

Observations by NASA's Hubble Space Telescope reveal magnesium and iron gas streaming from the strange world outside our solar system known as WASP-121b.

02.08.2019 | nachricht Read more

Quantum light sources pave the way for optical circuits: Light in the nanoworld

An international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of applications in quantum technologies, from quantum sensors and transistors in smartphones through to new encryption technologies for data transmission.

Previous circuits on chips rely on electrons as the information carriers. In the future, photons which transmit information at the speed of light will be able...

01.08.2019 | nachricht Read more

Confirmation of toasty TESS planet leads to surprising find of promising world

A piping hot planet discovered by NASA's Transiting Exoplanet Survey Satellite (TESS) has pointed the way to additional worlds orbiting the same star, one of which is located in the star's habitable zone. If made of rock, this planet may be around twice Earth's size.

The new worlds orbit a star named GJ 357, an M-type dwarf about one-third the Sun's mass and size and about 40% cooler that our star. The system is located 31...

01.08.2019 | nachricht Read more

NASA's TESS mission scores 'hat trick' with 3 new worlds

NASA's newest planet hunter, the Transiting Exoplanet Survey Satellite (TESS), has discovered three new worlds -- one slightly larger than Earth and two of a type not found in our solar system -- orbiting a nearby star. The planets straddle an observed gap in the sizes of known planets and promise to be among the most curious targets for future studies.

TESS Object of Interest (TOI) 270 is a faint, cool star more commonly identified by its catalog name: UCAC4 191-004642. The M-type dwarf star is about 40%...

31.07.2019 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>