Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internal medicine and how it correlates to orthopedics and anatomy

An examination of internal medicine reveals that it can be applied to many other fields of medicine, such as orthopedics, because of the human anatomy.

When the human anatomy exhibits congenital or developed flaws that restrict locomotor activity or the ability to function, we can rely on help from the fields of orthopedics and internal medicine. Various conditions such as arthritis, arthrosis, fractures, scoliosis or inflammation of the joints belong to the field of orthopedics, whereas internal medicine focuses on the prevention and diagnosis of such conditions. A fracture that restricts the human anatomy such that orthopedic surgery is required, which in turn leads to internal medicine treatment, highlights how closely the anatomy is tied to orthopedics or internal medicine. Knowledge of the human anatomy allows orthopedic as well as internal medicine specialists carry out appropriate rehabilitation measures. Through blood pressure readings, long-term EKG tests or rectoscopy, internal medicine provides information about the condition of the patient (related to the anatomy). At the same time, this is valuable information for choosing orthopedic treatment methods. These medical fields - orthopedics and internal medicine - exhibit a high degree of interdependency and symbiosis that is always related to the patient's anatomy. Therapies are meanwhile being employed that integrate both internal medicine andorthopedics into the treatment. In the long run, the human anatomy leads to a natural symbiosis between orthopedics and internal medicine because treatment approaches essentially demand the use of both fields.

Anatomy's sphere of activity

Whennephrology (internal medicine) identifies a problem caused by hip dysplasia (orthopedics) , the only path to finding an appropriate solution is to involve both medical fields. The goal of rehabilitation therapy is to relieve chronic pain or restricted body functions through a combination of anatomy, orthopedics and internal medicine expertise. Internal medicine looks at issues involving the immune and vascular systems, respiratory organs, possible infections, cardiology and oncology. In contrast,orthopedics involves surgical procedures (prosthetics for instance), the manufacture of a locomotor apparatus (for bones, muscles, ligaments or joints) or arthrosis treatments. These two fields of medicine rely on basic knowledge of the human anatomy. Without information about our anatomy, a balanced approach that involves both internal medicine and orthopedics would not be possible.

Orthopedics and internal medicine - complementary fields

If internal medicine determines that a hip prosthesis would lead to pulmonary (respiratory organs) problems because of the patient's anatomy, new measures must be carried out. Themutual interdependency of orthopedics and internal medicine is very specific and oriented toward the profile of the patient's anatomy. Successful treatment always requires a comprehensive profile of the patient's anatomy to enable internal medicine to provide the results (documented in the patient's record) to orthopedic specialists and to ensure that corresponding measures are carried out. Every well-trained orthopedic specialist requires the results of internal medicine examinations to gain a better picture of the patient's anatomy.

Anatomy is the focus

"Anatomy" is the key phrase. This is because anatomy, which is always tied to the patient's profile, provides information regarding to what extent internal medicine or orthopedics can find a solution. For this reason it is extremely important that internal medicine specialists have a detailed, exact picture of the patient's anatomy to allow them to determine what role the anatomy plays in the patient's profile.

Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Map of broken brain networks shows why people lose speech in language-based dementia

'Now we know where to target people's brains to attempt to improve their speech'

For the first time, Northwestern Medicine scientists have pinpointed the location of dysfunctional brain networks that lead to impaired sentence production and...

02.09.2019 | nachricht Read more

A Protective Factor Against Alzheimer’s Disease?

Researchers at the German Center for Neurodegenerative Diseases (DZNE) and the Institute for Stroke and Dementia Research (ISD) at the University Hospital of the Ludwig-Maximilians-Universität (LMU) in Munich have found that a protein called TREM2 could positively influence the course of Alzheimer's disease. When TREM2 is present in the cerebrospinal fluid at higher concentrations, patients at any stage of the disease have a better prognosis. This observation provides a starting point for the development of new therapeutic strategies. The study was led by Prof. Christian Haass (DZNE) and Prof. Michael Ewers (ISD, LMU) and is published in the journal “Science Translational Medicine”.

In the brain, TREM2 is exclusively produced by microglia, the immune cells of the brain. These cells patrol the brain and clear it from cellular waste products...

29.08.2019 | nachricht Read more

Osteoarthritis: A chip 'mimics' the disease to devise effective drugs

The study, published in Nature Biomedical Engineering, is led by the Politecnico di Milano alongside the University Hospital of Basel and the University Hospital of Zurich

A sophisticated chip the size of a coin in which cartilage can be cultivated and which can later be subjected to mechanical stress such that it generates the...

26.08.2019 | nachricht Read more

Protein-transport discovery may help define new strategies for treating eye disease

Study reveals how proteins from the eye's nerve cells relay visual cues to different parts of the brain

Many forms of vision loss stem from a common source: impaired communication between the eye and the brain. And at the root of all eye-to-brain communication...

22.08.2019 | nachricht Read more

Scientists discover the basics of how pressure-sensing Piezo proteins work

A team of scientists from Weill Cornell Medicine and The Rockefeller University has illuminated the basic mechanism of Piezo proteins, which function as sensors in the body for mechanical stimuli such as touch, bladder fullness, and blood pressure. The discovery is a feat of basic science that also opens up many new paths of investigation into the roles of Piezo proteins in human diseases and potential new therapeutic strategies.

In the study, published Aug. 21 in Nature, the scientists used advanced microscopy techniques to image the Piezo1 protein at rest and during the application of...

22.08.2019 | nachricht Read more

Research shows TCOM and osteopathic approach making a difference

Osteopathic medicine's emphasis on physician empathy and understanding leads to higher patient satisfaction, a study by researchers at UNTHSC's Texas College of Osteopathic Medicine indicates.

The 2 ½ -year study, conducted by the PRECISION Pain Research Registry and TCOM's John Licciardone, DO, MS, MBA, reaffirmed the importance of empathy and...

20.08.2019 | nachricht Read more

Graphene nanoflakes: a new tool for precision medicine

Chemists funded by the SNSF have created a new compound for flexible drug delivery that specifically targets prostate cancer cells. Incorporating four different molecules, the compound prevents tumour cells from multiplying, can be detected by medical imaging and has staying power in the bloodstream.

Usually, a drug is administered indiscriminately and most of it does not reach the diseased tissues. The goal of precision medicine is to increase the efficacy...

19.08.2019 | nachricht Read more

A new method of tooth repair? Scientists uncover mechanisms to inform future treatment

The study showed that a gene called Dlk1 enhances stem cell activation and tissue regeneration in tooth healing

Stem cells hold the key to wound healing, as they develop into specialised cell types throughout the body - including in teeth.

09.08.2019 | nachricht Read more

Take a break! Brain stimulation improves motor learning

There are many skills that we do automatically every day without thinking, such as operating a smartphone. But these had to initially be acquired, through repeated practice. The learning of new motor skills takes place both during the active practice of new processes and during breaks between learning sessions. These are particularly important for motor learning. What has been learned solidifies in the brain so that it can be recalled and executed later. Jost-Julian Rumpf from the University of Leipzig and Gesa Hartwigsen from MPI CBS suggest the process already begins during short interruptions of practice. Further, the solidification process can be improved with brain stimulation.

When exactly does the brain "remember" a newly learned motor sequence? Previously, it was assumed that the stabilization of learned motor processes does not...

08.08.2019 | nachricht Read more

How brain cells pick which connections to keep

Brain cells, or neurons, constantly tinker with their circuit connections, a crucial feature that allows the brain to store and process information. While neurons frequently test out new potential partners through transient contacts, only a fraction of fledging junctions, called synapses, are selected to become permanent.

The major criterion for excitatory synapse selection is based on how well they engage in response to experience-driven neural activity, but how such selection...

07.08.2019 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

UMD-led study captures six galaxies undergoing sudden, dramatic transitions

19.09.2019 | Physics and Astronomy

Study points to new drug target in fight against cancer

19.09.2019 | Health and Medicine

New tool improves beekeepers' overwintering odds and bottom line

19.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>