Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HomeScience ReportsReports and NewsArchitecture and Construction

What is a passive house and how is the architecture designed?

There are many reasons to build a passive house. The most important are related to the cost advantages you enjoy by building a passive house. The architecture of a passive house is designed so that the basic needs of the home owner, with respect to energy supply, are autonomously controlled. As the term "passive" implies, regulating the energy balance requires no action on your part. This capability stems from the architecture of the house. Roughly 8,000 people in Germany have meanwhile taken advantage of this architecture to build a passive house. But how does a passive house function and what is the respective architecture basically made of? The architecture is typically designed so that the outer shell of the passive house is insulated to keep the heat from escaping outside.

The passive house runs on its own

When building a passive house, a ventilation system acts to additional recover 80 percent of the heat. The roof of a passive house is designed to capture additional heat and store it until the room temperature sinks enough so that it must be released. Related studies have shown that a passive house constantly maintains an indoor temperature of more than 20°C at an outside temperature of -14°C. A passive house provides the freedom to individualize the architecture. The owner can decide whether to build the house out of concrete/brick, wood or a combination. The architecture always depends on the architect and the individual plan. However, there are several factors to consider when building a passive house.

The characteristics of a passive house thanks to its architecture

Passive houses exhibit specific characteristics that are tied to the architecture. The external building components must be extremely well insulated in addition to carefully constructing the corners, edges, joints and other cross sections. This would otherwise lead to excessive heat loss and failure of the architecture to fulfill the desired requirements. By taking these factors into account and using the right approach to building a passive house, one can expect a minimal heat loss of only .15 watts per square meter of external surface area. If you are building a house, the architecture should be designed to maximize the energy gain through the solar cells. For this reason, the solar cells on the roof of the passive house must have a southerly orientation.

To build a passive house, it should be designed such that the respective solar collectors and heat pumps supply power to the hot water system. When building a passive house and using the appropriate architecture, you can expect to significantly lower your operating costs.

Lower the operating costs

The architecture is what makes it possible for you to build a passive house and to have a complete energy system that runs on its own. While more and more people are dreaming of building a house, it always involves high costs. With the right architecture, you can build a passive house assuming that you will benefit from significantly lower monthly operating costs. This approach allows you to build to a house that runs completely on its own thanks to the corresponding high-quality architecture . Because the architecture is so well thought-out, you can build this house under the assumption that the heating balance will regulate itself. For this reason, you can assume that building a house is a worthwhile effort.

Architecture and Construction

Here you can discover new and innovative developments from the world of building design and construction.

innovations-report offers reports and articles on a variety of topics such as building optimization, modern construction materials, energy-efficient construction, natural insulation materials and passive buildings.

Latest News:

Page anfang | 22 | 23 | 24 | 25 | 26 | ende

TERREAL terracotta facades go global

TERREAL of France, a leading manufacturer of terracotta construction materials, specialises in terracotta facades for commercial and residential buildings and is currently looking for distributors. The company has demonstrated its international expertise by advising architects in Spain, England, the USA and China. TERREAL will be showcasing its latest product lines at various trade shows in the coming months. TERREAL’s expertise is a major advantage in the terracotta cladding 17.05.2005 | nachricht Read more

Combining technologies leads to safer, more efficient crane

EUREKA project E! 2797 FACTORY MSETC (Mobile Self-Erecting Tower Crane) has successfully combined the technologies of mobile and self-erecting cranes to create a single crane that can do the work of five. The new crane features an anti-sway device which makes it safer as well as more efficient. The Belgian lead partner, Arcomet NV, has developed self-erecting tower cranes for the building industry for many years. “These cranes were mounted and remained in a fixed position on 03.03.2005 | nachricht Read more

Sprinklers shown effective in slowing dorm fires

An automatic sprinkler system significantly increases a person’s chances of surviving a dormitory fire, according to a report issued recently by the National Institute of Standards and Technology (NIST). Three NIST experiments,* supported by a U.S. Fire Administration (USFA) initiative for fire safety in college housing, compared the hazards of fires in smoke detector-equipped dormitories with and without fire sprinklers in the room of fire origin. Researchers started fires 14.02.2005 | nachricht Read more

Decorators Uncover Rare Architectural Find

An exciting find has been made by decorators working at A-listed Lilybank House, which belongs to the University of Glasgow. Hidden beneath layers of paint the decorators discovered colourful original stencilling work which experts are sure date back to 1863, when this addition to the house was designed by Alexander ‘Greek’ Thomson. The University of Glasgow immediately called in Historic Scotland’s conservation experts to investigate and manage the conservation process. 04.02.2005 | nachricht Read more

Horizontal Densification - Living Quality at a Low Cost

Courtyard houses and terraced houses are the central topics of a newly released publication on the forms of horizontal densification in domestic architecture. Besides the history of these building types, the various types, quality criteria and their implementation within the purview of the numerous concepts of urban development are dealt with in detail. The book, published in German with the aid of the Austrian Science Fund (FWF), thus offers a unique review of a residential building type that - 17.01.2005 | nachricht Read more

Elegant shape of Eiffel Tower solved mathematically by U. of Colorado professor

An American engineer has produced a mathematical model explaining the elegant shape of the Eiffel Tower that was derived from French engineer Gustave Eiffel’s writings regarding his own fears about the effects of wind on such a structure. University of Colorado at Boulder Associate Professor Patrick Weidman said Eiffel, one of the premier structural engineers in history, was determined to build the world’s first tower reaching 300 meters, the nearest metric equivalent to 06.01.2005 | nachricht Read more

Contractor ignorance kills earthquake victims in sesmic zones

Hundreds of thousands of earthquake fatalities could be averted if building contractors and homeowners were alerted to elementary construction principles, especially in the world’s six deadliest earthquake countries led by Iran, according to a University of Colorado at Boulder seismologist. Roger Bilham said Iran, Turkey, China and the Caucasus states run the highest risk among developing nations, while Japan and Italy are the most hazardous industrialized nations in terms of eart 20.12.2004 | nachricht Read more
Page anfang | 22 | 23 | 24 | 25 | 26 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
VideoLinks
Science & Research
Overview of more VideoLinks >>>