Reactive oxygen species shown essential for development of inner ear’s balance machinery

Though linked to aging and cancer, reactive oxygen species plays another role

Reactive oxygen species (ROS) are normally produced as a product of metabolism, and, as their name implies, they are highly reactive with surrounding biological components. The ability of ROS to damage DNA and other critical molecules underlies their reputation for causing deleterious cellular effects and their association with aging, carcinogenesis, and atherosclerosis. However, in an unanticipated discovery suggesting that ROS may play important positive roles in development, researchers have found that the production of ROS by a particular enzyme is essential for inner ear development and for the ability to properly maintain balance.

The work is reported in Current Biology by a team of researchers, including Peter Kiss and Botond Banfi of the University of Iowa.

A biologically constructive function for ROS in development was unanticipated. Even a previously known beneficial role for ROS seems to be intimately linked to toxicity: White blood cells generate ROS by an NADPH oxidase enzyme to kill invading bacteria. In recent years, evidence has been accumulating that other NADPH oxidases, similar to that of white blood cells, are widespread in the body, but their function remains largely obscure.

In their study, the researchers show that a spontaneously discovered line of mutant mice, named “head slant” because of the odd head and body posture of these animals, carries a mutation in the Noxo1 gene, which encodes an NADPH oxidase enzyme. This error in Noxo1 inactivates the enzyme in the inner ear, leading to very specific consequences: Mutant mice lack the tiny calcium carbonate crystals of the inner ear, which, because of their large inert mass, normally enable animals to determine the direction of gravitational pull. The Noxo1 mutant mice are unable to sense gravity and therefore often fall, rest in a slanted posture, and are unable to remain on the surface of water. By inserting an intact Noxo1 gene into the genome of “head slant” mutants, researchers enabled the mutant mice to maintain balance. These findings indicate that reactive oxygen species produced at the right place at the right time can have a constructive developmental role, in contrast to their previously known toxic effects.

Media Contact

Heidi Hardman EurekAlert!

More Information:

http://www.current-biology.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Economies take off with new airports

A global study by an SUTD researcher in collaboration with scientists from Japan explores the economic benefits of airport investment in emerging economies using nighttime satellite imagery. Be it for…

CAR T–cell immunotherapy targets

Pan-cancer analysis uncovers a new class of promising CAR T–cell immunotherapy targets. Scientists at St. Jude Children’s Research Hospital found 156 potential CAR targets across the brain and solid tumors,…

Stony coral tissue loss disease

… is shifting the ecological balance of Caribbean reefs. The outbreak of a deadly disease called stony coral tissue loss disease is destroying susceptible species of coral in the Caribbean…

Partners & Sponsors