Wounded plants: how they coordinate their healing

Too much Auxin may cause tumorous behavior Lukas Hoermayer / IST Austria

All living organisms suffer injuries. Animals and humans have movable cells, specialized in finding, approaching, and healing wounds. Plant cells, however, are immobile and can't encapsulate the damage.

Instead, adjacent cells multiply or grow to fill the injury. In this precision process, each unique cell decides whether it will stretch or divide to fill the wound. Even though scientists study regeneration in plants since the mid-19th century, the cell's 'reasons' for either choice remained unclear.

Now, scientists in the group of Professor Jiří Friml from the Institute of Science and Technology Austria (IST Austria) discovered that the hormone Auxin and pressure guide the plant's way of regenerating.

“It is incredibly fascinating how robust and flexible plant regeneration is, considering how static those organisms are,” says Lukas Hoermayer, a leading scientist in this study.

To investigate wound healing, the scientists injured a thale cress root with a laser. They then tracked cells during regeneration with a microscope.

The scientists found that the hormone Auxin, which is essential in plant growth and development, also plays a vital role in wound healing. It builds up in those cells directly touching the wound and facilitates the plant's response to injury.

When the scientists artificially changed the Auxin amounts, either no cells or too many cells responded to the wound. This uncoordinated process, sometimes even led to tumorous swelling of the root.

“Only the precise coordination of many cells throughout the whole tissue yields a defined and localized wound response,” explains Lukas Hoermayer.

Furthermore, the team recorded a pressure change within the plant, caused by the collapsing cells of the wound. When the scientists reduced the cellular pressure before cutting the plant, the pressure difference vanished, and the regeneration was weakened.

By observing plant regeneration and modifying it with chemical treatments, the scientists identified Auxin concentration and pressure changes as governing processes.

Their results advance the understanding of how roots manage to heal wounds and hence survive in sandy soil or the presence of root-attacking herbivores.

Lukas Hoermayer, Juan Carlos Montesinos, Petra Marhava, Eva Benková, Saiko Yoshida, Jiří Friml. Wounding induced changes in cellular pressure and localized Auxin signaling spatially coordinate restorative divisions in roots. PNAS. DOI: 10.1073/pnas.2003346117

Media Contact

Patrick Müller idw - Informationsdienst Wissenschaft

More Information:

https://ist.ac.at/de/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors