Building an atomic-scale vacuum trap for spin-polarized electrons

Artist’s view of the injection of spin-polarized electrons into a vacuum trap formed between an atomically sharp tip and magnetic atoms on a surface. S. Krause, University of Hamburg

They placed an atomically sharp magnetic probe tip in front of a magnetic sample surface, thereby realizing a one-dimensional trap for electrons in the gap.

Only when resonance conditions in terms of electron energy and spin are fulfilled, standing wave states evolve in the trap, and injection of spin-polarized electrons into these states allows for the investigation of single electron reflection at the underlying atom at the surface.

Providing unprecedented insights into the atomic-scale scattering mechanism, the study potentially paves the way towards future spintronic devices employing spin-dependent electron scattering and transport.

Dr. Anika Schlenhoff
Department of Physics
University of Hamburg
Phone: +49 40 42838 6201
E-Mail: aschlenh@physnet.uni-hamburg.de

Prof. Dr. Roland Wiesendanger
Department of Physics
University of Hamburg
Phone: +49 40 42838 5244
E-Mail: wiesendanger@physnet.uni-hamburg.de

A. Schlenhoff, S. Kovařík, S. Krause, and R. Wiesendanger,
Vacuum resonance states as atomic-scale probes of noncollinear surface magnetism,
Phys. Rev. Lett. 123, 087202 (2019).
DOI: 10.1103/PhysRevLett.123.087202

Media Contact

Andrea Beese, FG "NANOSCIENCE", Uni Hamburg idw - Informationsdienst Wissenschaft

More Information:

http://www.nanoscience.de

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors