How barbastelle bats trick moths that are able to hear their echolocation calls

A barbastelle bat with its characteristic bumpy face Daniel Lewanzik / MPIO

Recording the hunting behaviour of this intriguing species, researchers have now found that barbastelle bats sneak up on unsuspecting moths by gradually emitting even fainter calls as they come closer.

The barbastelle bat, with its characteristic bumpy face, is a very successful hunter that manages to almost exclusively feed on eared moths. Comparable with stealth fighter jets, barbastelle bats use a 'stealth echolocation' tactic – echolocation at intensities that are inaudible to distant moths – to ambush prey. Their calls are more than 10 times quieter than those of other bats which hunt insects in the same way.

Upon detecting a nocturnal moth, this intriguing bat species reduces its call intensity even further while closing in, according to new research by ecologists at the Max Planck Institute for Ornithology in Germany.

Consequently, call intensity heard by the moth only increases very slowly, delaying the time and shortening the distance at which it becomes aware of the attacker. Once a moth hears the calls, it is most likely too late to escape.

“Barbastelle bats call with surprisingly low intensity, usually a characteristic of species that hunt in cluttered habitats and need to avoid distracting echoes from branches and leaves. Low intensity calls come at a cost though. They do not reach far and as a result, insects can only be detected from a close distance,” says Dr Daniel Lewanzik from the Max Planck Institute of Ornithology.

To test why the barbastelle can catch eared moths when other bats cannot, the authors closely investigated echolocation behaviour during pursuit and final attack.

They tethered moths (Noctua pronuba) to a long fishing rod with a miniature microphone positioned a few centimetres above, offering them to free-ranging barbastelle bats in a forest and to captive ones in a flight room. This allowed the team to analyse the echolocation calls from a moth's perspective. Simultaneously, the researchers recorded the calls of approaching bats with a four-microphone array in order to reconstruct three-dimensional flight paths and thus measure their distance to the moths.

Barbastelle bats can detect moths at about 1.6 m distance. Once approaching their unsuspecting prey, the bats lower their already faint calls by 4 decibels (dB) or 40% for each halving of distance. During the final buzz when they are less than 1 m away, call intensity decreases by more than 6 dB or 50% per halving of distance*.

Echolocation call levels received by the moths remain almost constant during the attack (instead of doubling per halving of distance) as a result of the bats' stealth tactic, keeping them low enough to prevent the moth from escaping.

“Our results suggest that barbastelle bats are able to outwit the hearing defence of moths and close in without triggering any last-ditch manoeuvres, making them very successful moth hunters, ” concludes Dr Holger Goerlitz, also from the research institute. “In fact, the evolution of moth ears might benefit barbastelles as they can avoid competition with other, louder bats.”

For more information on this study, please contact the authors:

Dr Daniel Lewanzik, Max Planck Institute for Ornithology, Email: dlewanzik@orn.mpg.de, Tel: +49 8157 932 378
Dr Holger Goerlitz, Max Planck Institute for Ornithology, Email: hgoerlitz@orn.mpg.de, Tel: +49 8157 932 372

To request a pdf copy of the study and/or audiovisual material, please contact:

Sabrina Weiss, Press Officer, British Ecological Society, Email: press@britishecologicalsociety.org, Tel: +44 207 685 2523
Or:
Dr. Sabine Spehn, Press Officer, Max Planck Insitute for Ornithology
Email: pr_seewiesen@orn.mpg.de, Tel. +49 8157 932421

http://onlinelibrary.wiley.com/wol1/doi/10.1111/1365-2435.13073/full (with end of embargo time freely available for four weeks)

Media Contact

Dr. Sabine Spehn Max-Planck-Institut für Ornithologie

More Information:

http://www.orn.mpg.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors