Low Cost Sensor for Online-Monitoring of Formaldehyde

So far the analysis of indoor concentrations of formaldehyde is only possible via expensive methods, normally requiring GC or HPLC analysis in the lab. So called MOX (metal oxide) sensors theoretically permit an online-monitoring, but there is so far no instrument available for the detection of relevant concentrations in the ppb-range at reasonable costs.
Our invention presents a novel MOX-sensor based on In4Sn3O12 as sensitive layer with sensitivities for formaldehyde being two orders of magnitude above those of established reference sensors. Our sensor allows an online/realtime-monitoring of formaldehyde in day to day settings, at low cost.

Further information: PDF

Eberhard Karls Universität Tübingen
Phone: +49 (7071) 29-72639

Contact
Dr. Rolf Hecker

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors