Laser Technique Able to Detect Developing Cavities

Forget sharp metal picks or X-rays-in the future, your dentist may search for cavities using a painless laser-based technique developed at U of T that can detect cracks or defects at an early stage of development.
v “Using the technique, we can see all the way to the pulp-more than five millimetres inside a tooth,” says Professor Andreas Mandelis of U of T’s Department of Mechanical and Industrial Engineering. “It can reveal suspicious regions invisible to the naked eye below the surface of the tooth.”

Using a device similar to a laser pointer, Mandelis and his team directed near-infrared light at different frequencies towards human teeth. The light, upon penetrating a tooth, slightly heated it and generated infrared radiation that revealed cavities. Higher frequencies worked best to reveal defects near the surface of a tooth, while lower frequencies uncovered problems deep below the enamel. This method of heat-generating laser light is called depth profilometry.

While standard X-rays can reveal existing cavities, he says, his team’s photo-thermal technique can expose defects at very early stages of development, prompting preventive treatment. It also avoids the need for a heavy lead apron to protect patients from hazardous X-rays. The technique may have further applications in detecting skin and sub-dermal cancers. It can also detect flaws in metals, coatings or electronic devices.

The study, which appears in the January issue of the Review of Scientific Instruments, was funded by Materials and Manufacturing Ontario. CONTACT: Professor Andreas Mandelis, Department of Mechanical and Industrial Engineering, 416-978-5106, mandelis@mie.utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca

Media Contact

Nicolle Wahl U of T Public Affairs

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors