World's First Diamond Nanoelectromechanical Switch Toward New Functionality of Diamonds and …

Researchers at NIMS have succeeded in the batch fabrication of suspended structures (cantilevers and bridges) of single crystal diamond for nano/micro electromechanical systems.

Dr. Meiyong Liao, a Senior Researcher of Sensor Materials Center (Managing Director: Hajime Haneda), National Institute for Materials Science (President: Sukekatsu Ushioda), cooperated with his colleagues, succeeded in the batch fabrication of suspended structures (cantilevers and bridges) of single crystal diamond for nano/micro electromechanical systems (NEMS/MEMS). Based on this process, they achieved in the world the first single crystal diamond NEMS switch.

The NEMS switch has the advantages of low-leakage current, low-power consumption and sharp on/off ratio in comparison with the conventional semiconductor devices. Most of the existing NEMS/MEMS switches are based on silicon or metal materials, which have the drawbacks of poor mechanical, chemical, and thermal stability, poor reliability and durability. Diamond is the ideal material for NEMS/MEMS due to the highest elastic modulus, mechanical hardness, thermal conductivity, and variable electrical conductivity from insulator to conductor. However, due to the difficultly in fabricating suspended structures of single crystal diamond, the development of single crystal diamond NEMS/MEMS devices has been a challenge.

The NIMS research team developed a process for fabricating suspended single crystal diamond structures by locally forming a graphite sacrificial layer in a single crystal diamond substrate by high energy ion implantation, followed by the growth of a diamond epilayer with electrical conductivity by microwave plasma chemical vapor deposition method (MPCVD) and the removal of the graphite sacrificial layer. As a further development of this technique, the group also succeeded for the first time in fabricating NEMS switching devices with a transistor-like structure comprising 3 electrodes.

The leakage current of the developed diamond NEMS switch is very low, and the power consumption is less than 10pW (picowatt). The devices exhibit high reproducibility, high reliability and no surface stiction. Stable operation of the diamond NEMS switch in a high temperature environment (250‹C) was also confirmed. The Youngfs modulus of the moveable cantilever structure was measured to be 1100GPa, which is close to the value of bulk diamond single crystals. Thus, high-speed (gigahertz) switching operation can be expected.

In comparison with the existing MEMS switches, the diamond NEMS switches are expected to show greatly improved functions, including reliability, lifetime, speed, and electrical handling capacity, etc. The developed devices can be applied as microwave switch for next-generation wireless communications and logic circuit under harsh environments. These research results also establish the infrastructure for diamond NEMS/MEMS with novel functions, opening the way for the development of various chemical, physical, and mechanical sensors.

For more detail contact:

Meiyong Liao (English inquiry)
Optical Sensor Group, Sensor Materials Center
National Institute for Materials Science
TEL: +81-29-860-4311
FAX: +91-29-851-4005
E-Mail: meiyong.liao@nims.go.jp
Yasuo Koide (Japanese inquiry)
E-Mail: koide.yasuo@nims.go.jp

Media Contact

Mikiko Tanifuji EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors