Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blasting off to Mercury and other planets with astronomy

Man has always been drawn to the discovery of alien worlds and planets. And this urge has reached its zenith thanks to astronomy and travel to alien planets.

Astronomy adds a whole new dimension to the scientific impulse to discover and conquer other planets and systems beyond earth's realm. Astronomy allows scientists to not only carry out earth-based observations of planets such as Mercury. It also provides the basis for the continual discovery of new galaxies and unknown planets. Astronomy has made huge advances, due in part to the exploration of Mercury. innovations-report provides continuous coverage of the general advances being made in astronomy, as well as those specific to the discovery of Mercury, in continuously updated articles and scientific reports about astronomy, Mercury and other planets and galaxies.

Scientific look at Mercury

innovations-report encompasses a comprehensive astronomy database filled with a rich assortment articles and reports on all areas of science, research and innovations. This of course includes a large selection of documents on physics and astronomy. Whether it's achievements in astronomy, the discovery of new planets or progress in the journey to Mercury, innovations-report provides readers all of the latest developments from numerous independent research sources on the subjects of "Mercury", "planets" and general astronomy.

Astronomy - an interdisciplinary field

Apart from finding the right documents and sources covering technical advances in astronomy, readers can also learn about the findings and thought processes of other disciplines (philosophy for instance) that are actively examining astronomy and its approaches, as well as plans for journeys to planets like Mercury. The database contains a large selection of free information and articles covering basic issues ranging from "How far is Mercury from earth? " to the composition of Mercury and other planets. The path to the various planets, be it Mars, Pluto or Mercury, is not necessarily light years removed. A visit to innovations-report leads the reader to remote worlds of astronomy, alien planets and galaxies, planets related to Mars and Mercury, through the Milky Way and into black holes. Or simply put, through the entire cosmos of astronomy.

How heavy is Mercury?

Determining the weight of a planet like Mercury would appear to be a difficult undertaking. After all, it's not as simple as placing a planet on a scale, whether it's Mercury or some other planet. Such aspects are nevertheless a part of astronomy. With innovations-report.com, readers can get an exciting look at the world of astronomy, Mercury and other planets. Among other information, you can find reports that explain how researchers go about calculating the weight and dimensions of Mercury and other planets. Astronomy does not involve dreaming. Instead, it has more to do with applying methods and strategies from the field of physics. The distance to the planets is a constant challenge for researchers. Those with an interest in astronomy can rely on innovations-report to discover how scientists tackle these challenges, what knowledge they have gained about planets such as Mercury and the progress toward journeys to other planets.

Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

Astronomers at the University of Michigan's College of Literature, Science, and the Arts (LSA) discovered for the first time that the hot gas in the halo of the Milky Way galaxy is spinning in the same direction and at comparable speed as the galaxy's disk, which contains our stars, planets, gas, and dust. This new knowledge sheds light on how individual atoms have assembled into stars, planets, and galaxies like our own, and what the future holds for these galaxies.

Astronomers at the University of Michigan's College of Literature, Science, and the Arts (LSA) discovered for the first time that the hot gas in the halo of...

26.07.2016 | nachricht Read more

Lonely Atoms, Happily Reunited

The remarkable behaviour of platinum atoms on magnetite surfaces could lead to better catalysts. Scientists at TU Wien (Vienna) can now explain how platinum atoms can form pairs with the help of carbon monoxide.

At first glance, magnetite appears to be a rather inconspicuous grey mineral. But on an atomic scale, it has remarkable properties: on magnetite, single metal...

26.07.2016 | nachricht Read more

The Exception and its Rules

“Exceptional points” give rise to counter-intuitive physical effects. Researchers from TU Wien (Vienna) make use of these phenomena to create a novel kind of wave guide, which is now being presented in the journal “Nature”.

No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser – all kinds of waves can be in different states of oscillation,...

25.07.2016 | nachricht Read more

New record in materials research: 1 terapascals in a laboratory

An international team of researchers headed by Prof. Dr. Natalia Dubrovinskaia and Prof. Dr. Leonid Dubrovinsky of the University of Bayreuth has succeeded in creating a pressure of 1 trillion pascals in a laboratory. A study published in Science Advances is opening up new research prospects in physics, solid state chemistry, materials science, geophysics, and astrophysics.

The extreme pressures and temperatures that can be achieved and controlled with great precision in a laboratory are ideal objects of investigation in physics,...

22.07.2016 | nachricht Read more

Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

22.07.2016 | nachricht Read more

New Yale-developed device lengthens the life of quantum information

Yale University scientists have reached a milestone in their efforts to extend the durability and dependability of quantum information.

For the first time, researchers at Yale have crossed the "break even" point in preserving a bit of quantum information for longer than the lifetime of its...

21.07.2016 | nachricht Read more

Quantum drag

University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet

Friction and drag are commonplace in nature. You experience these phenomena when riding in an airplane, pairing electrical wiring, or rubbing pieces of...

21.07.2016 | nachricht Read more

World's most sensitive dark matter detector completes search

At a conference in the United Kingdom, scientists with the LUX dark matter experiment present results from the detector's final 20-month run

The Large Underground Xenon (LUX) dark matter experiment, which operates beneath a mile of rock at the Sanford Underground Research Facility in the Black Hills...

21.07.2016 | nachricht Read more

Electron spin control: Levitated nanodiamond is research gem

Researchers have demonstrated how to control the "electron spin" of a nanodiamond while it is levitated with lasers in a vacuum, an advance that could find...

20.07.2016 | nachricht Read more

The birth of quantum holography: Making holograms of single light particles!

Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics.

Scientists at the Faculty of Physics, University of Warsaw, have created the first ever hologram of a single light particle. The spectacular experiment,...

19.07.2016 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>