Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials sciences - an interdisciplinary research field

Materials sciences involves the research, development, characterization, manufacture and processing of materials.

Materials sciences- the basis

As an interdisciplinary field, materials sciences encompasseschemistry, physics, mineralogyand many other areas of science. As a result, it is also tied closely to copper, iron and steel.

The transition from natural materials such as stone, wood, ivory or leather to the targeted production of materials such as copper, steel or iron

.

Copper, steel and iron were produced as early as the Neolithic, roughly around 4,300 B.C. Copper and iron were produced as far back as the New Stone Age, roughly 4,300 B.C. This was then followed by the transition to the Bronze Age. It wasn't until the Iron Age that apart from iron, steel and copper, aluminum was also produced using the Hall-Héroult process. For a long time, materials sciences was interested almost exclusively in metals such as iron, copper and steel. However, this has changed with the rediscovery of concrete. While the first, mass-produced plastic materials eventually attracted the interest of the broad public, materials sciences continues to carry out research into iron, copper and steel.

The first metals and the ancient times

Copper, steel and iron were the first metals that mankind became familiar with as it evolved. Copper is very easy to process. As a result, copper was already being used 10,000 years ago by the oldest known cultures 10,000. The era of large-scale copper use (between 3,000 and 5,000 B.C.) is referred to as the Copper Age. The devotees of alchemy associate copper with Venus, the symbol of femininity. The first mirrors were even made from copper. The Roman Empire was the largest producer of copper prior to the Industrial Age. Copper remains an extremely popular material.

Steel - stable and dependable

Mankind has acquired long years of practical experience with steel. Steel is a preferred material in engineering because of its durability, excellent corrosion properties and suitability for welding. It is significantly more stable than copper. The European steel registry lists more than 2,300 types of steel. Coal and steel served as the pillars of heavy industry over a long period of time and were thus the foundations of political power. Steel is defined as an iron-carbon alloy with less than 2.06 percent carbon content. Steel, or iron, has a density of 7.85-7.87 g/cm3. Steel melts at a temperature that can be as high as 1,536°C and therefore withstands much higher temperatures than copper.Steel was first produced around 1,000 B.C., much later than copper. In an ecological sense, steel is a sustainable material because it can be continuously reused with minimal quality loss .

Iron - from decoration to general utility

The use of iron was first recorded around 4,000 B.C. in Egypt. It was a solid iron used for decorations and for making spear tips. It was more suitable for these purposes than steel or copper. Smelted iron appeared later in Mesopotamia and Egypt, but it was only intended for ceremonial purposes. Perhaps iron came about as a byproduct of bronze production. After the Hethiter developed a method to produce iron, cultures became increasingly reliant on iron between 1,600 and 1,200 B.C. Iron is thought to be a major element of the earth's core, along with nickel. Iron is produced by reducing iron ore through a chemical reaction with carbon. In contrast to steel or copper, iron is produced in blast furnaces.

Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Latest News:

Page anfang | 2 | 3 | 4 | 5 | 6 | ende

New material makes cooling devices more energy-efficient

Waste heat from industry can often not be utilised because of its low temperature. With this material, it can be used in environmentally friendly cooling systems for example in the field of building technology. The research team from Kiel will present its material and its applications at the Hannover Messe 2018.

Cooling devices are considered to be power guzzlers, in which polluting refrigerants are still used, even after the ban on chlorofluorocarbons (CFCs). An...

10.04.2018 | nachricht Read more

A different spin on superconductivity

Unusual particle interactions open up new possibilities in exotic materials

When you plug in an appliance or flip on a light switch, electricity seems to flow instantly through wires in the wall. But in fact, the electricity is carried...

09.04.2018 | nachricht Read more

Light 'relaxes' crystal to boost solar cell efficiency

Rice, Los Alamos discovery advances case for perovskite-based solar cells

Some materials are like people. Let them relax in the sun for a little while and they perform a lot better.

06.04.2018 | nachricht Read more

It's a trap!

When a solar cell absorbs a photon of light, it starts an electronic race against time. Two particles -- a negatively charged electron and positively charged "hole" -- generate electricity if they fully separate.

However, when these particles become trapped within a solar material before they can fully separate, it can diminish the ability of the material to convert...

29.03.2018 | nachricht Read more

Brilliant perspective: Computer tomography analyzes damage to raw materials under load

The ability to test various materials without destroying them is essential in many areas of commerce and industry. The Fraunhofer LBF in Germany has now developed a new method that for the first time combines the mechanical testing of a component under realistic loads with a radiographic examination. The method is used to characterize materials, and it makes it easier to assess inclusions or damage to raw material with regard to their influence on the durability and service life. In so doing, Fraunhofer LBF provides materials designers and manufacturers as well as scientists with information for better understanding of material behavior and material characterization.

“Understanding how damage occurs to the material of a component while is placed under realistic mechanical loads is one of the key questions in materials...

28.03.2018 | nachricht Read more

Atomistic Insights into Electrocatalysis

Latest findings published in Nature Catalysis

Electrocatalysts are important for many industrial processes as they enhance the conversion of electrical energy into chemical energy and thus help to store...

27.03.2018 | nachricht Read more

For graphite pellets, just add elbow grease

Rice University researchers use mechano-chemical process to make strong, lightweight material

It's easy and economical to make shiny pellets of graphite from functionalized graphene, according to scientists at Rice University.

23.03.2018 | nachricht Read more

Sensitive grip

Bionics for gripping: Nature provided key inspiration in the development the new shape-adaptive forceps. The tips gently adapt to the surface, distribute pressure evenly and ensure that surfaces are not damaged. An ideal tool for biologic research and surgery.

Dr. Oliver Schwarz at Fraunhofer IPA explains: »Traditional forceps always exert the greatest pressure at the tip. For biologists and medical professionals...

23.03.2018 | nachricht Read more

UV sphere makes applying paint quick and easy

Cars, furniture, electronic enclosures – all sorts of things are painted. However, the usual paint drying processes have attracted criticism on account of high energy consumption. A new refined system reduces energy requirements, sustainably protects the environment and drastically shortens cycle times.

There are two options when it comes to curing painted components: Either you can dry them with warmth, which takes a relatively long time and requires a lot of...

23.03.2018 | nachricht Read more

Keeping a tight hold on things: Robot-mounted vacuum grippers flex their artificial muscles

A short electric pulse is all it takes to generate and release a powerful vacuum in the blink of an eye. The novel vacuum gripper developed by the research team led by Professor Stefan Seelecke at Saarland University enables robot arms to pick up objects and move them around freely in space. The system works without the need for compressed air to generate the vacuum, it is energy efficient, quiet and suitable for use in clean rooms. The specialists for intelligent materials systems make use of artificial muscles, which are bundles of ultrafine shape memory wires that are able to tense and relax just as real muscle fibres do.

The wires also function as sensors and can sense, for example, when the gripper needs to readjust or tighten its grip.

23.03.2018 | nachricht Read more
Page anfang | 2 | 3 | 4 | 5 | 6 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>