Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials sciences - an interdisciplinary research field

Materials sciences involves the research, development, characterization, manufacture and processing of materials.

Materials sciences- the basis

As an interdisciplinary field, materials sciences encompasseschemistry, physics, mineralogyand many other areas of science. As a result, it is also tied closely to copper, iron and steel.

The transition from natural materials such as stone, wood, ivory or leather to the targeted production of materials such as copper, steel or iron

.

Copper, steel and iron were produced as early as the Neolithic, roughly around 4,300 B.C. Copper and iron were produced as far back as the New Stone Age, roughly 4,300 B.C. This was then followed by the transition to the Bronze Age. It wasn't until the Iron Age that apart from iron, steel and copper, aluminum was also produced using the Hall-Héroult process. For a long time, materials sciences was interested almost exclusively in metals such as iron, copper and steel. However, this has changed with the rediscovery of concrete. While the first, mass-produced plastic materials eventually attracted the interest of the broad public, materials sciences continues to carry out research into iron, copper and steel.

The first metals and the ancient times

Copper, steel and iron were the first metals that mankind became familiar with as it evolved. Copper is very easy to process. As a result, copper was already being used 10,000 years ago by the oldest known cultures 10,000. The era of large-scale copper use (between 3,000 and 5,000 B.C.) is referred to as the Copper Age. The devotees of alchemy associate copper with Venus, the symbol of femininity. The first mirrors were even made from copper. The Roman Empire was the largest producer of copper prior to the Industrial Age. Copper remains an extremely popular material.

Steel - stable and dependable

Mankind has acquired long years of practical experience with steel. Steel is a preferred material in engineering because of its durability, excellent corrosion properties and suitability for welding. It is significantly more stable than copper. The European steel registry lists more than 2,300 types of steel. Coal and steel served as the pillars of heavy industry over a long period of time and were thus the foundations of political power. Steel is defined as an iron-carbon alloy with less than 2.06 percent carbon content. Steel, or iron, has a density of 7.85-7.87 g/cm3. Steel melts at a temperature that can be as high as 1,536°C and therefore withstands much higher temperatures than copper.Steel was first produced around 1,000 B.C., much later than copper. In an ecological sense, steel is a sustainable material because it can be continuously reused with minimal quality loss .

Iron - from decoration to general utility

The use of iron was first recorded around 4,000 B.C. in Egypt. It was a solid iron used for decorations and for making spear tips. It was more suitable for these purposes than steel or copper. Smelted iron appeared later in Mesopotamia and Egypt, but it was only intended for ceremonial purposes. Perhaps iron came about as a byproduct of bronze production. After the Hethiter developed a method to produce iron, cultures became increasingly reliant on iron between 1,600 and 1,200 B.C. Iron is thought to be a major element of the earth's core, along with nickel. Iron is produced by reducing iron ore through a chemical reaction with carbon. In contrast to steel or copper, iron is produced in blast furnaces.

Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Latest News:

Page anfang | 2 | 3 | 4 | 5 | 6 | ende

Boron nitride foam soaks up carbon dioxide

Rice University scientists lead effort to make novel 3-D material

Rice University materials scientists have created a light foam from two-dimensional sheets of hexagonal-boron nitride (h-BN) that absorbs carbon dioxide.

17.08.2017 | nachricht Read more

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

Graphene Flagship scientists based at the University of Groningen, The Netherlands, have created a device based on a blilayer of graphene and boron nitride which shows unprecedented spin transport efficiency at room temperature. Highlighting the potential of creating devices containing graphene and related materials, the spin signal measured here is so large that it can be used in real life applications such as spin based logic and transistors.

Published in Nature Communications this research, led by Professor Bart van Wees, University of Groningen, The Netherlands, reports a graphene-based device in...

16.08.2017 | nachricht Read more

From hot to cold: How to move objects at the nanoscale

Moving a single gold nanocluster on a graphene membrane, thanks to a thermal gradient applied to the borders: a new study sheds light on the physical mechanisms driving this phenomenon

To move a nanoparticle on the surface of a graphene sheet, you won't need a "nano-arm": by applying a temperature difference at the ends of the membrane, the...

10.08.2017 | nachricht Read more

New optical method pinpoints weak spots in jet engine thermal coatings

Approach could predict coating lifetime and help improve efficiency of airplane engines

Researchers have demonstrated, for the first time, that an optical analysis method can reveal weak areas in ceramic thermal barrier coatings that protect jet...

10.08.2017 | nachricht Read more

Landscapes give latitude to 2-D material designers

Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects

Rice University researchers have learned to manipulate two-dimensional materials to design in defects that enhance the materials' properties.

10.08.2017 | nachricht Read more

Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

09.08.2017 | nachricht Read more

How superhydrophobic materials stay totally dry

Raincoats, car windshields, waterproof phones: They all use a little chemistry to stay dry. Inspired by nature, chemists use extremely water-fearing, or superhydrophobic, coatings to repel water from surfaces to keep them dry. Watch as the Reactions team uses a high-speed camera and some brave volunteers to bring the science of staying dry to life: https://youtu.be/YR4uCvy7wOA.

Raincoats, car windshields, waterproof phones: They all use a little chemistry to stay dry. Inspired by nature, chemists use extremely water-fearing, or...

08.08.2017 | nachricht Read more

Materials governed by light

Researchers at the UPV/EHU-University of the Basque Country have obtained hybrid photoactive materials with more stable and more rigid dyes that promise a broad range of applications

Hybrid materials are those that combine components of differing origins (organic and inorganic) in order to obtain materials different from conventional ones...

07.08.2017 | nachricht Read more

New model for bimolecular reactions in nanoreactors

Nanoreactors are tiny systems which facilitate specific chemical reactions, as a catalyst does. Many are found in biological systems, such as certain proteins. But chemists are also able to synthesise artificial nanoreactors to control chemical reactions. An important class of these nanoreactors has a "yolk & shell" architecture like an egg: a catalytically active metallic nanoparticle is surrounded by a shell consisting of a polymeric network. These kinds of nanoreactors can create isolated environments for specific reactions and restrict them to the tiny space inside the shell.

Mathematical description delivers new insights

04.08.2017 | nachricht Read more

Cicada wings may inspire new surface technologies

Researchers are looking to insects - specifically cicadas - for insight into the design of artificial surfaces with de-icing, self-cleaning and anti-fogging abilities.

Their wings allow cicadas to fly, of course, but they also are good at repelling water - a condition that humans can appreciate, too.

03.08.2017 | nachricht Read more
Page anfang | 2 | 3 | 4 | 5 | 6 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>