Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials sciences - an interdisciplinary research field

Materials sciences involves the research, development, characterization, manufacture and processing of materials.

Materials sciences- the basis

As an interdisciplinary field, materials sciences encompasseschemistry, physics, mineralogyand many other areas of science. As a result, it is also tied closely to copper, iron and steel.

The transition from natural materials such as stone, wood, ivory or leather to the targeted production of materials such as copper, steel or iron

.

Copper, steel and iron were produced as early as the Neolithic, roughly around 4,300 B.C. Copper and iron were produced as far back as the New Stone Age, roughly 4,300 B.C. This was then followed by the transition to the Bronze Age. It wasn't until the Iron Age that apart from iron, steel and copper, aluminum was also produced using the Hall-Héroult process. For a long time, materials sciences was interested almost exclusively in metals such as iron, copper and steel. However, this has changed with the rediscovery of concrete. While the first, mass-produced plastic materials eventually attracted the interest of the broad public, materials sciences continues to carry out research into iron, copper and steel.

The first metals and the ancient times

Copper, steel and iron were the first metals that mankind became familiar with as it evolved. Copper is very easy to process. As a result, copper was already being used 10,000 years ago by the oldest known cultures 10,000. The era of large-scale copper use (between 3,000 and 5,000 B.C.) is referred to as the Copper Age. The devotees of alchemy associate copper with Venus, the symbol of femininity. The first mirrors were even made from copper. The Roman Empire was the largest producer of copper prior to the Industrial Age. Copper remains an extremely popular material.

Steel - stable and dependable

Mankind has acquired long years of practical experience with steel. Steel is a preferred material in engineering because of its durability, excellent corrosion properties and suitability for welding. It is significantly more stable than copper. The European steel registry lists more than 2,300 types of steel. Coal and steel served as the pillars of heavy industry over a long period of time and were thus the foundations of political power. Steel is defined as an iron-carbon alloy with less than 2.06 percent carbon content. Steel, or iron, has a density of 7.85-7.87 g/cm3. Steel melts at a temperature that can be as high as 1,536°C and therefore withstands much higher temperatures than copper.Steel was first produced around 1,000 B.C., much later than copper. In an ecological sense, steel is a sustainable material because it can be continuously reused with minimal quality loss .

Iron - from decoration to general utility

The use of iron was first recorded around 4,000 B.C. in Egypt. It was a solid iron used for decorations and for making spear tips. It was more suitable for these purposes than steel or copper. Smelted iron appeared later in Mesopotamia and Egypt, but it was only intended for ceremonial purposes. Perhaps iron came about as a byproduct of bronze production. After the Hethiter developed a method to produce iron, cultures became increasingly reliant on iron between 1,600 and 1,200 B.C. Iron is thought to be a major element of the earth's core, along with nickel. Iron is produced by reducing iron ore through a chemical reaction with carbon. In contrast to steel or copper, iron is produced in blast furnaces.

Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Flexing for the next silicon wave

A strategy that uses a screen-printed aluminium circuit to make silicon solar cells extremely flexible could enable them to become portable power sources. Developed by KAUST, such power sources could help to satisfy the growing demand for wearable and implantable devices, foldable displays and vehicle-integrated solar panels.

Crystalline silicon is naturally abundant and highly scalable and has reliable and consistent photovoltaic properties that are appealing for the development of...

30.01.2018 | nachricht Read more

'Chemical net' could be key to capturing pure hydrogen

Drexel University's MXene material could help produce clean-burning hydrogen fuel

Hydrogen is one of the most abundant elements on Earth and an exceptionally clean fuel source. While it is making its way into the fuel cells of electric cars,...

30.01.2018 | nachricht Read more

Weak hydrogen bonds key to strong, tough infrastructure

Rice University lab simulates polymer-cement composites to find strongest, toughest materials

The right mix of hydrogen bonds in polymer and cement composites is critical to making strong, tough and ductile infrastructure material, according to Rice...

30.01.2018 | nachricht Read more

Scientists reveal the fundamental limitation in the key material for solid-state lighting

For the first time an international research group has revealed the core mechanism that limits the indium (In) content in indium gallium nitride ((In, Ga)N) thin films - the key material for blue light emitting diodes (LED). Increasing the In content in InGaN quantum wells is the common approach to shift the emission of III-Nitride based LEDs towards the green and, in particular, red part of the optical spectrum, necessary for the modern RGB devices. The new findings answer the long-standing research question: why does this classical approach fail, when we try to obtain efficient InGaN-based green and red LEDs?

Despite the progress in the field of green LEDs and lasers, the researchers could not overcome the limit of 30% of indium content in the films. The reason for...

25.01.2018 | nachricht Read more

Prediction of titanic nitride proved unsinkable

Long sought-after form of cubic, semiconducting titanium nitride synthesized

A team of experimental and computational scientists led by Carnegie's Tim Strobel and Venkata Bhadram have synthesized a long sought-after form of titanium...

25.01.2018 | nachricht Read more

Quantum control

Scientists develop quantum metamaterial from complex twin qubits

An international team consisting of Russian and German scientists has made a breakthrough in the creation of seemingly impossible materials. They have managed...

24.01.2018 | nachricht Read more

Siberian scientists suggested a new method for synthesizing a promising magnetic material

Scientists from Siberian Federal University (SFU) together with their colleagues from the Institute of Chemistry and Chemical Technology of Siberian Department of Russian Academy of Sciences and Kirensky Institute of Physics of Siberian Department of Russian Academy of Sciences used a new method for synthesizing iron-dysprosium garnet. Magnetic materials of this class are used in microwave and magnetic photon equipment. Iron-dysprosium garnet is understudied and may have previously unknown properties. The article was published in Materials Science and Engineering journal.

Although the method of anion resin exchange precipitation has been known since 1960s-1970s, it was only used to synthesize the hydroxides of aluminum, chrome...

23.01.2018 | nachricht Read more

Complex tessellations, extraordinary materials

An international team of researchers lead by the Technical University of Munich (TUM) has discovered a reaction path that produces exotic layers with semiregular structures. These kinds of materials are interesting because they frequently possess extraordinary properties. In the process, simple organic molecules are converted to larger units which form the complex, semiregular patterns.

Only a few basic geometric shapes lend themselves to covering a surface without overlaps or gaps using uniformly shaped tiles: triangles, rectangles and...

23.01.2018 | nachricht Read more

Thanks for the memory: NIST takes a deep look at memristors

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. Scientists at the National Institute of Standards and Technology (NIST) have now unveiled the long-mysterious inner workings of these semiconductor elements, which can act like the short-term memory of nerve cells.

Just as the ability of one nerve cell to signal another depends on how often the cells have communicated in the recent past, the resistance of a memristor...

22.01.2018 | nachricht Read more

Let the good tubes roll

Inspired by biology, a PNNL-led team of scientists has created new tiny tubes that could help with water purification and tissue engineering studies

Materials scientists, led by a team at the Department of Energy's Pacific Northwest National Laboratory, designed a tiny tube that rolls up and zips closed.

19.01.2018 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>