Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovations from the fields of bionics, marine biology and microbiology

Understanding nature and transferring its traits to technology is not only the objective of bionics, but also of marine biology and microbiology.

Bionics, marine biology or microbiology. Here you can find scientific reports and articles about achievements and developments in the fields of bionics, marine biology and microbiology. Technical research departments at many universities and institutes are examining and learning from nature and then collaborating with the fields of bionics, marine biology and microbiology. Although Arnold Gehlen once labeled humanity as a "flawed being" that had to create its own culture to survive nature's environment, we can be certain he had not yet considered the opportunities presented by bionics, marine biology and microbiology. Science is meanwhile using the traits of the flawed being to contemplate how to utilize bionics, marine biology and microbiology to copy animals, plants and the rest of the environment. Because nature features attributes such as the hardest and most durable materials and efficient energy production and conversion, it has become a treasure trove of knowledge for bionics, marine biology and microbiology. As a stand-alone branch of research, science can use bionics to demonstrate that nature is superior to humans in many aspects and that we still have a lot to learn from it, whether in macro or microbiology.

Bionics takes the leap from comics to research

The "Bionic Six" comic and animated television series revolved around a family who collaborated with a researcher to utilize the attributes of nature to combat those intent on destroying it. The "Bionic Six" acquired their power and speed through bionics. They knew how to take advantage of the physical forces of nature and were already advancing into the fields of marine biology and microbiology research. Today, bionics is a well-respected field of research that has little to do with children's entertainment. Bionics occupies itself with nature's "inventions" and works closely with the fields of marine biology and microbiology to transfer their attributes to the human culture. Bionics has already proved its worth in the fields of materials research and nano technology. Bionics and microbiology have also made progress in areas such as energy production and storage.

Marine biology and microbiology - two close partners

Marine biology has enjoyed new impetus over the past several years. Although researchers have long been occupied with both fields, marine biology and microbiology were thrust into the public spotlight no later than with the publication of "The Swarm", a novel by German author Frank Schätzing. Over the last year, marine biology and microbiology reports revealed that although scientists have unearthed a wealth of new discoveries in marine biology and microbiology, there remain thousands of undiscovered animal species in both areas. Microbiology is actually a vital part of marine biology since the ocean depths contain not only large animals, but also organisms that cannot be seen with the naked eye. And this is where microbiology comes into play. Marine biology and microbiology are engaged in examining the effects of currents, depths and temperatures on the development and propagation of organisms and animals. For this reason, marine biology and microbiology researchers are working to discover new animal species and organisms, all the while further expanding the depths of geography and science. When marine biology and microbiology come together with bionics, this can result in unimagined discoveries and thus the development of new methods that humans can implement for their own benefit and for the protection of the environment. The latest achievements in the fields of bionics, marine biology and microbiology can be found in innovations-report.

Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Latest News:

Page anfang | 2274 | 2275 | 2276 | 2277 | 2278 | ende

Big-Bottomed Sheep Have A Rare Genetic Mutation That Builds Muscle, Not Fat

Scientists have discovered an elusive, mutated gene named for the Greek goddess, Aphrodite Kallipygos, that causes certain sheep to have unusually big and muscular bottoms. They hope the genetic mutation will illuminate how muscle and fat are deposited in these animals and possibly in humans. The discovery is especially exciting, said the researchers, because the unusual gene has evaded all the traditional means of detection for nearly a decade. In fact, the gene appears to represent one of 17.09.2002 | nachricht Read more

Researchers identify first genomic blueprint of cancer preventive compound found in broccoli

Discovery could lead to the identification of other cancer-preventing compounds Using gene chip technology, researchers at the Johns Hopkins Bloomberg School of Public Health have identified the blueprint of genes and enzymes in the body that enable sulforaphane, a compound found in broccoli and other vegetables, to prevent cancer and remove toxins from cells. The discovery was made using a "gene chip" that allows researchers to monitor the complex interactions of thousands of protein 16.09.2002 | nachricht Read more

Chemists show proteins behave differently inside cells than they do in water solutions

In findings they believe are fundamentally important to both biology and medicine, chemists at the University of North Carolina at Chapel Hill have shown experimentally for the first time that proteins can behave differently inside cells than when taken out of those cells and studied in test tubes. "For 40 years, we thought we could learn most everything about proteins by studying them in water, but this work shows we are missing important observations by looking at them just in water or oth 16.09.2002 | nachricht Read more

One gene, two important proteins

Researchers discover gene in cancer-causing "STAT" family encodes two -not one-functional proteins When the Human Genome Project first revealed last year that humans possess only an estimated 30,000 genes - fives times more than a mustard weed plant - the fact that many genes code for more than just one protein assumed greater importance. Such protein variations, researchers reasoned, must play an even larger role in contributing to the remarkable complexity of human beings. 16.09.2002 | nachricht Read more

Wake Forest-Johns Hopkins team discovers prostate cancer gene

Scientists in the Center for Human Genomics at Wake Forest University School of Medicine and Johns Hopkins Medical Institutions have discovered a gene that "may play an important role in prostate cancer susceptibility in both African-American men and men of European descent." The 31-member team reports in the October issue of Nature Genetics that mutations in the MSR1 (for Macrophage Scavenger Receptor 1) gene were found in 4.4 percent of Caucasians who had prostate cancer, compared to 0.8 p 16.09.2002 | nachricht Read more

NHGRI Adds Cow and Dog To High Priority List For Sequencing Model Organisms

The National Advisory Council for Human Genome Research has recommended adding the cow, the dog and the ciliate Oxytricha to the high-priority list of model organisms that should be considered for genome sequencing as capacity becomes available. Cow and dog join a growing group of high priority animals that includes chimpanzee, chicken and honeybee. Sequencing projects on the human, mouse and rat genomes are progressing rapidly, making sequencing capability supported by the National Human Genome Rese 13.09.2002 | nachricht Read more

Breast Cancer Gene Repairs Damaged DNA

Structural studies of the protein produced by the BRCA2 gene, which is implicated in the development of hereditary breast and ovarian cancers, reveal that the protein is intimately involved in repairing damaged DNA. DNA-repair proteins perform a vital function and protect against potentially catastrophic events such as cancer-causing mutations or chromosome rearrangements, which are hallmarks of tumor cells. Howard Hughes Medical Institute investigator Nikola P. Pavletich and his co 13.09.2002 | nachricht Read more

Enzyme discovery to benefit homeland security, industry

Scientists at the Department of Energy’s Pacific Northwest National Laboratory have successfully immobilized enzymes while simultaneously enhancing their activity and stability, opening up new possibilities for using tailored nanoporous materials. The findings, reported in an upcoming issue of the Journal of the American Chemical Society (available online Aug. 28), could enable the development of novel sensor and decontamination systems for homeland security, environmental protection and energy 13.09.2002 | nachricht Read more

Research may take the "anti" out of antioxidants

In the quest to repair damaged DNA - a process believed crucial in combating ailments ranging from cancer to aging - antioxidant has been the Holy Grail. But findings published this week in Nature suggest oxidation isn’t always the enemy. Scientists at Michigan State University, along with colleagues in England, have uncloaked a mechanism that uses oxygen to repair DNA - until now an unlikely part of the restorative recipe. Their work is published in the Sept. 12 issue of the British sc 12.09.2002 | nachricht Read more

DNA’s oscillating double helix hinders electrical conduction

DNA has an oscillating double-helix structure. This oscillating means that the DNA molecules conduct electricity much less well than was previously thought. Ultrafast cameras were one of the devices the researchers from Amsterdam used to demonstrate this. It turns out the DNA does not have a rigid regular structure as stated in textbooks. In reality the double helix of DNA forms a very dynamic chaotic system. The rigid structure in textbooks should be regarded as the average position of many 11.09.2002 | nachricht Read more
Page anfang | 2274 | 2275 | 2276 | 2277 | 2278 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>